1315

Nickel(II)–Cyclam: an Extremely Selective Electrocatalyst for Reduction of CO₂ in Water

Marc Beley, Jean-Paul Collin, Romain Ruppert, and Jean-Pierre Sauvage

Laboratoire de Chimie Organo-Minérale, U.A. 422 au CNRS, Institut de Chimie, 1, rue Blaise Pascal, 67000 Strasbourg, France

 CO_2 is electroreduced efficiently to CO on a mercury cathode, in the presence of $[Ni^{"}(cyclam)]^{2+}$; even in pure water, the selectivity for reduction of CO_2 vs. that of H_2O is huge.

The reduction of CO_2 is important in converting this abundant carbon source into organic products. On metal cathodes, the direct electrochemical reduction of CO₂ generally occurs at highly negative potentials.1 Recently, several molecular electrocatalysts have been proposed that diminish the overvoltage; they are mainly based on nitrogen-containing macrocyclic complexes of cobalt or nickel.²⁻⁵ A difficulty arises in the selectivity of reduction in that the presence of H₂O is necessary⁴ and H_2 is generally one of the major products. Until now, one of the only selective electrocatalysts reported seems to be a rhenium(I) complex, operating in a mixed solvent.⁶ We report here that (1,4,8,11-tetra-azacyclotetradecane)nickel(II) $\{[NiII(cyclam)]^{2+}\}$ is a selective electrocatalyst for the reduction of CO_2 to CO_2 , even in pure water; in addition, the reaction is effective at potentials ca. 0.5 V below the thermodynamic value $[CO_2/CO: E^{\circ'} = -0.41 \text{ V vs.}]$

normal hydrogen electrode (N.H.E.) at pH = 5]. Some results are listed in Table 1.

The experimental data clearly show that (i) without electrocatalyst or with NiCl₂, only H₂ can be detected (runs 1 and 2), (ii) in the presence of $[Ni^{II}(cyclam)]^{2+}$, the electroreductive process is effective at -0.9 V, the velocity of the reaction being remarkable (turnover frequency *ca.* 32 h⁻¹) at -1.05 V (run 6), (iii) $[Ni^{II}(cyclam)]^{2+}$ is quantitatively recycled (overall turnover numbers *ca.* 10² in runs 5 and 6), and (iv) the Faradaic yields are almost quantitative for runs 5 and 6, confirming the high selectivity of the process. Taking into account the respective concentrations of CO₂ (< 0.1 M) and H₂O (*ca.* 55 M) in the medium, the actual selectivity for reduction of CO₂ *vs.* that of H₂O is higher than 10⁶.

The catalytic effect of $[Ni^{II}(cyclam)]^{2+}$ was demonstrated by cyclic voltammetry, as shown in Figure 1. Clearly, an

Table 1. Electrocatalytic reduction of CO₂ by [Ni^{II}(cyclam)]²⁺ in water.^a

				Turnover frequency		
			Total volume ^b of	(h ⁻¹); ^c overall	Average current	Volume of H ₂ produced/ml;
Run	Electrocatalyst	E(V vs. N.H.E.)	CO produced (ml)	turnover of Ni	efficiencyd/%	H ₂ : CO in gas produced
1		-1.05	< 0.05	_	_	0.36; > 10
2	NiCl ₂ 6H ₂ O	-1.05	< 0.05	_		1.6; > 30
3	Ni(cyclam)Cl ₂	-0.90	0.4	0.3;1.2	36	$< 0.01; < 2 imes 10^{-2}$
4	$Ni(cyclam)Cl_2$	-0.95	3.6	2.9; 10.8	82	$< 0.01; < 3 \times 10^{-3}$
5	Ni(cyclam)Cl ₂	-1.00	23.7	18;77.5	99	$< 0.01; < 5 imes 10^{-4}$
6	Ni(cyclam)Cl ₂	-1.05	35.6	32;116	96	$< 0.01; < 3 \times 10^{-4}$
4 CO ₂ (99 995% purity) saturated solutions (75 ml H ₂ O at 25 °C pH cg. 4.1) containing the electrocatalyst (1.7 × 10 ⁻⁴ M) and KNO ₂						

^a CO₂ (99.995% purity) saturated solutions (75 ml H₂O at 25 °C; pH *ca.* 4.1) containing the electrocatalyst (1.7×10^{-4} M) and KNO₃ (0.1 M) were placed in a gas-tight electrolysis cell; the working electrode (18 cm²) was mercury (99.99999% purity). The total volume occupied by the gases in the electrolysis cell was 86 ml. The gases were analysed by g.c. ^b After 4 h of electrolysis. ^c Turnover numbers are calculated from mol of CO produced per mol of electrocatalyst. ^d Current efficiency $\rho: \rho = \frac{2n_{CO} \times 96500}{C}$, n_{CO} : mol CO produced, C = coulombs passed during the run.

Figure 1. (A) Amount of CO produced in 4 h of electrolysis as a function of applied potential; experimental conditions: see footnote a, Table 1. (B) Cyclic voltammograms of $[Ni^{11}(cyclam)]^{2+}$ (2 × 10⁻³ M) in H₂O. Full line: CO₂ saturated solution (measured pH = 4.1); dashed line: argon degassed solution (pH = 4.1, adjusted with dilute HNO₃). Hanging mercury electrode; support electrolyte: KNO₃ (0.1 M); scan rate = 600 mV/s; room temperature.

important electrocatalytic current is observed when CO₂ is present; in MeCN, the reversibility of the $[NiII(cyclam)]^{2+/}$ $[NiI(cyclam)]^+$ couple⁷ was lost by addition of CO₂. Even at high scan rates (200 V/s), no reoxidation process could be observed after reduction of $[NiII(cyclam)]^{2+}$ in water under CO₂. Without CO₂, the $[NiII(cyclam)]^{2+/}[NiI(cyclam)]^+$ couple is reversible in aqueous KClO₄ ($E^{\circ} = -1.33$ V vs. N.H.E.), whereas reversibility is lost in dilute KNO₃; indeed $[NiII(cyclam)]^{2+}$ is an electrocatalyst for reduction of nitrate to NH₄⁺.

Slight changes in the conditions used or in the nature of the catalyst have a significant influence on the course of the

reaction: (1) the reaction becomes much less efficient when the pH is increased in a KHCO₃/K₂CO₃ buffer (pH = 10.6; 0.25 M), only trace amounts of CO and formate are formed after electrolysis at -1.05 V vs. N.H.E. CO₂ is thus the real substrate. (2) Surprisingly, among a large number of tetra-aza complexes of nickel investigated, only [NiII(cyclam)]²⁺ displays exceptional electrocatalytic properties; unsaturated macrocyclic compounds or open chain complexes (containing 2,3,2-teten, 3,2,3-teten, or tren)[†] are very poor catalysts. Nickel complexes of saturated substituted tetra-aza 14 membered rings are acceptable electrocatalysts, but they are not selective for reduction of CO_2 vs. that of $H_2O.5$ The particularity of [Ni^{II}(cyclam)]²⁺ is due to its macrocyclic structure, making the reduced compound resistant to decomplexation;⁸ in addition, steric factors are likely to be determinant: the highly accessible metal centre of [Nil(cyclam)]+ reacts more readily with CO2 than would that of, for instance, $[Ni^{l}(L)]^{+}$, L being 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.9 On the other hand, if the metal centre is hindered, it might react with a small substrate like a proton, making the process less specific with respect to reduction of CO₂.

In conclusion, these preliminary results indicate that the unencumbered complex, $[Ni^{II}(cyclam)]^{2+}$, is an active and selective electrocatalyst for reduction of CO₂ in aqueous medium, whereas acyclic or substituted compounds have drastically different properties as catalysts.

Received, 16th July 1984; Com. 1021

References

- 1 P. G. Russell, N. Kovac, S. Srinivasan, and M. Steinberg, J. *Electrochem. Soc.*, 1977, **124**, 1329, and references therein; J. C. Gressin, D. Michelet, L. Nadjo, and J. M. Savéant, *Nouv. J. Chim.*, 1979, **3**, 545.
- 2 S. Meshitsuka, M. Ichikawa, and K. Tamaru, J. Chem. Soc., Chem. Commun., 1974, 158.
- 3 K. Takahashi, K. Hiratsuka, H. Sasaki, and S. Toshima, Chem. Lett., 1977, 1137; 1979, 305.
- 4 B. Fisher and R. Eisenberg, J. Am. Chem. Soc., 1980, 102, 7361.
- 5 M. G. Bradley, T. Tysak, D. J. Graves, and N. A. Vlachopoulos, J. Chem. Soc., Chem. Commun., 1983, 349.
- 6 J. Hawecker, J. M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun., 1984, 328.
- 7 $[Ni^{II}(cyclam)]^{2+}/[Ni^{I}(cyclam)]^+$: $E^{\circ} = -1.70 \text{ V} vs. \text{ Ag/Ag}^+$ (0.1 M) reference electrode, in MeCN; F. V. Lovecchio, E. S. Gore, and D. H. Busch, J. Am. Chem. Soc., 1974, **96**, 3109.
- 8 D. C. Olson and J. Vasilevskis, Inorg. Chem., 1969, 1611.
- 9 The introduction of methyl groups in tetra-aza macrocyclic complexes of nickel(1) has already been shown to decrease dramatically the reaction rate of these complexes with various substrates; N. Jubran, G. Ginzburg, H. Cohen, and D. Meyerstein, J. Chem. Soc., Chem. Commun., 1982, 517.

 $\pm 2,3,2$ -teten = 1,3,7,9-tetra-azanonane; 3,2,3-teten = 1,4,7,10-tetra-azadecane; tren = 1,3,5-triaza-3-(2-aminoethyl)pentane.