Nickel(ii)-Cyclam: an Extremely Selective Electrocatalyst for Reduction of CO₂ in **Water**

Marc Beley, Jean-Paul Collin, Romain Ruppert, and Jean-Pierre Sauvage

Laboratoire de Chimie Organo-Minerale, U.A. 422 au CNRS, lnstitut de Chimie, 1, rue Blaise Pascal, 67000 Strasbourg, France

 $CO₂$ is electroreduced efficiently to CO on a mercury cathode, in the presence of $[Ni^{II}(cyclam)]²⁺;$ even in pure water, the selectivity for reduction of $CO₂$ *vs.* that of $H₂O$ is huge.

The reduction of $CO₂$ is important in converting this abundant carbon source into organic products. On metal cathodes, the direct electrochemical reduction of $CO₂$ generally occurs at highly negative potentials.¹ Recently, several molecular electrocatalysts have been proposed that diminish the overvoltage; they are mainly based on nitrogen-containing macrocyclic complexes of cobalt or nicke1.2--5 **A** difficulty arises in the selectivity of reduction in that the presence of H_2O is necessary⁴ and H_2 is generally one of the major products. Until now, one of the only selective electrocatalysts reported seems to be a rhenium (i) complex, operating in a mixed solvent.6 We report here that **(1,4,8,11-tetra-azacyclo**tetradecane)nickel(π) { $[N_iII(cyclam)]²⁺$ } is a selective electrocatalyst for the reduction of $CO₂$ to $CO₂$, even in pure water; in addition, the reaction is effective at potentials *ca.* 0.5 V below the thermodynamic value $[CO_2/\text{CO} : E^{\circ\prime} = -0.41 \text{ V}$ *vs.*

normal hydrogen electrode $(N.H.E.)$ at $pH = 5$]. Some results are listed in Table 1.

The experimental data clearly show that (i) without electrocatalyst or with NiCl₂, only H₂ can be detected (runs 1 and 2), (ii) in the presence of $[Ni^{II}(cyclam)]²⁺$, the electroreductive process is effective at -0.9 V, the velocity of the reaction being remarkable (turnover frequency *ca.* 32 h⁻¹) at -1.05 V (run 6), (iii) [Ni^{II}(cyclam)]²⁺ is quantitatively recycled (overall turnover numbers *ca.* 102 in runs *5* and *6),* and (iv) the Faradaic yields are almost quantitative for runs *5* and **6,** confirming the high selectivity of the process. Taking into account the respective concentrations of CO_2 (< 0.1 M) and H_2O (ca. 55 M) in the medium, the actual selectivity for reduction of $CO₂$ *vs.* that of $H₂O$ is higher than 10⁶.

The catalytic effect of $[Ni^{II}(cyclam)]²⁺$ was demonstrated by cyclic voltammetry, as shown in Figure 1. Clearly, an

Table 1. Electrocatalytic reduction of $CO₂$ by $[Ni^{H1}(cyclam)]²⁺$ in water.^a

		Turnover frequency				
			Total volume ^b of	(h^{-1}) : overall	Average current	Volume of H ₂ produced/ml;
Run	Electrocatalyst	E (V vs. N.H.E.)	CO produced (ml)	turnover of Ni	efficiency ^{$d/\%$}	H_2 : CO in gas produced
		-1.05	< 0.05			$0.36 := 10$
	NiCl ₂ 6H ₂ O	-1.05	${}_{0.05}$		$-$	1.6: > 30
	Ni(cyclam)Cl ₂	-0.90	0.4	0.3:1.2	36	< 0.01 ; $< 2 \times 10^{-2}$
	Ni(cvelam)Cl ₂	-0.95	3.6	2.9:10.8	82	< 0.01 : $< 3 \times 10^{-3}$
	Ni(cvelam)Cl ₂	-1.00	23.7	18:77.5	99	< 0.01 : $< 5 \times 10^{-4}$
6	Ni(cvelam)Cl ₂	-1.05	35.6	32:116	96	< 0.01 : $< 3 \times 10^{-4}$
$a \cap \Omega$						$(00,0059)$ purity) coturated solutions (75 ml H O at 25 °C, pH ag A 1) containing the electrocately (1.7 \times 10–4 y) and VNO

 CO_2 (99.995% purity) saturated solutions (75 ml H₂O at 25 °C; pH *ca.* 4.1) containing the electrocatalyst (1.7 \times 10⁻⁴ M) and KNO₃ (0.1 m) were placed in a gas-tight electrolysis cell; the working electrode (18 cm^2) was mercury (99.99999% purity). The total volume occupied by the gases in the electrolysis cell was 86 ml. The gases were analysed by g.c. b After 4 h of electrolysis. c Turnover numbers are cal-
culated from mol of CO produced per mol of electrocatalyst d Current efficiency α culated from mol of CO produced per mol of electrocatalyst. ^d Current efficiency $\rho: \rho = \frac{2n_{\text{CO}} \times 96500}{n_{\text{CO}}}$, n_{CO} : mol CO *C* produced, $C =$ coulombs passed during the run.

Figure 1. (A) Amount of CO produced in 4 h of electrolysis as a function of applied potential; experimental conditions: see footnote a, Table 1. (B) Cyclic voltammograms of $[Ni^{II}(cyclam)]^{2+}$ (2 × 10⁻³ M) in H₂O. Full line: CO_2 saturated solution (measured pH = 4.1); dashed line: argon degassed solution ($pH = 4.1$, adjusted with dilute $HNO₃$). Hanging mercury electrode; support electrolyte: $KNO₃$ (0.1 m) ; scan rate = 600 mV/s; room temperature.

important electrocatalytic current is observed when $CO₂$ is present; in MeCN, the reversibility of the $[Ni^{II}(cyclam)]²⁺/$ $[Ni!(cyclam)]^+$ couple⁷ was lost by addition of CO_2 . Even at high scan rates (200 V/s), no reoxidation process could be observed after reduction of $[Ni^H(cyclam)]²⁺$ in water under $CO₂$. Without $CO₂$, the $[Ni^H(cyclam)]²⁺/[Ni^I(cyclam)]⁺$ couple is reversible in aqueous $\angle KCO_4$ $(\vec{E}^{\circ} = -1.33 \text{ V} \text{ v}.$ $N.H.E.$), whereas reversibility is lost in dilute $KNO₃$; indeed $[N_iII(cyclam)]²⁺$ is an electrocatalyst for reduction of nitrate to $NH₄$ +.

Slight changes in the conditions used or in the nature of the catalyst have a significant influence on the course of the reaction: (1) the reaction becomes much less efficient when the pH is increased in a KHCO₃/K₂CO₃ buffer (pH = 10.6; *0.25* M), only trace amounts of CO and formate are formed after electrolysis at -1.05 V *vs.* N.H.E. CO₂ is thus the real substrate. *(2)* Surprisingly, among a large number of tetra-aza complexes of nickel investigated, only $[Ni^H(cyclam)]²⁺$ displays exceptional electrocatalytic properties; unsaturated macrocyclic compounds or open chain complexes (containing 2,3,2-teten, 3,2,3-teten, or tren)? are very poor catalysts. Nickel complexes of saturated substituted tetra-aza 14 membered rings are acceptable electrocatalysts, but they are not selective for reduction of $CO₂$ *vs.* that of $H₂O⁵$ The particularity of $[Ni^H(cyclam)]^{2+}$ is due to its macrocyclic structure, making the reduced compound resistant to decom p 1exation;⁸ in addition, steric factors are likely to be determinant: the highly accessible metal centre of [Ni^I(cyclam)]⁺ reacts more readily with $CO₂$ than would that of, for instance, [Ni*(L)]+, L being **5,5,7,12,12,14-hexamethyl-1,4,8,1** l-tetraazacyclotetradecane.9 On the other hand, if the metal centre is hindered, it might react with a small substrate like a proton, making the process less specific with respect to reduction of $CO₂$.

In conclusion, these preliminary results indicate that the unencumbered complex, $[Ni^H(cyclam)]²⁺$, is an active and selective electrocatalyst for reduction of $CO₂$ in aqueous medium, whereas acyclic or substituted compounds have drastically different properties as catalysts.

Received, 16th July 1984; Corn. 1021

References

- 1 P. G. Russell, N. Kovac, **S.** Srinivasan, and **M.** Steinberg, *J. Electrochem. Soc.,* 1977, **124,** 1329, and references therein; J. C. Gressin, D. Michelet, L. Nadjo, and J. M. Savéant, *Nouv. J. Chim.,* 1979, **3,** 545.
- 2 **S.** Meshitsuka, M. Ichikawa, and K. Tamaru,J. *Chem. SOC., Chem. Commun.,* 1974, 158.
- 3 K. Takahashi, **K.** Hiratsuka, H. Sasaki. and **S.** Toshima, *Chem. Left.,* 1977, 1137; 1979, 305.
- 4 B. Fisher and R. Eisenberg, J. *Am. Chem. SOC.,* 1980, **102,** 7361.
- *5* M. G. Bradley, T. Tysak, D. J. Graves, and N. A. Vlachopoulos,J. *Chem. SOC., Chem. Commun.,* 1983, 349.
- *6* J. Hawecker, J. M. Lehn, and R. Ziessel, *J. Chem. SOC., Chem. Commun.,* 1984, 328.
- $7 [\text{Ni}^{\text{II}}(\text{cyclam})]^{2+}/[\text{Ni}^{\text{I}}(\text{cyclam})]^{+}$: $E^{\circ} = -1.70 \text{ V}$ *vs.* Ag/Ag⁺ (0.1 M) reference electrode, in MeCN; F. V. Lovecchio, E. **S.** Gore, and D. H. Busch, *J. Am. Chem.* **SOC.,** 1974, **96,** 3109.
- 8 D. C. Olson and J. Vasilevskis, *Znorg. Chem.,* 1969, 1611.
- 9 The introduction of methyl groups in tetra-aza macrocyclic complexes of nickel(1) has already been shown to decrease dramatically the reaction rate of these complexes with various substrates; N. Jubran, G. Ginzburg, H. Cohen, and D. Meyerstein, *J. Chem. Soc., Chem. Commun., 1982, 517.*

t 2,3,2-teten = **1,3,7,9-tetra-azanonane;** 3,2,3-teten = 1,4,7,10-tetraazadecane; tren = **1,3,5-triaza-3-(2-aminoethyI)pentane.**