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Synthesis of Four Possible Steric Isomers of P-Methylhomoallyl Alcohols1 
Yuichi Kobayashi, Yasunori Kitano, and Fumie Sato* 
Department of Chemical Engineering, Tokyo Institute of Technolog y, Meguro, Tokyo 752, Japan 

Synthesis of both (R)-  and (S)-2-methyl-3-trimethylsilyl but-3-enal ( I ) ,  and the preparation of the four possible steric 
isomers of P-methylhomoallyl alcohols (2) and (3) using (1) is decribed. 

Enantio-selective preparation of syn- and anti-(3- 
methylhomoallyl alcohols has attracted much interest in 
relation to the synthesis of macrolide and ionophore antibiot- 
ics. The most attractive approaches to date include addition of 
optically active but-2-enylboron2 or but-2-enylsilane deriva- 
tives3 to aldehydes, or via [2,3]-Wittig sigmatropic rearrange- 
ment of chiral but-2-enyl ethers.4 However, with both these 
methods there are difficulties with preparing enantiomerically 
pure starting materials and/or incomplete chiral selectivity 
during carbon-carbon bond formation. Recently we have 
shown that (RS)-2-methyl-3-trirnethylsilylbut-3-enal (1) 
reacts with Grignard reagents highly selectively affording the 
corresponding syn adducts (2), and that syn-(2) thus pre- 
pared can be readily converted into their diastereoisomers, 
anti-(2) , via oxidation and subsequent reduction with metal 
hydride reagents [equation (1)].5 We have also shown that 
protodesilylation of (2) to (3) proceeds quantitatively with 
NaH-hexamethylphosphoramide.5 This communication 
reports the synthesis of the chiral aldehydes (R)-(1) and 
(S)-(l), and preparation of all four possible steric isomers of 
(2) and (3) from (1). T 

Synthesis of (R)-(1) began with the optically active epoxide 
(4) [>%YO enantiomeric excess (e.e.)] which was prepared by 
Sharpless asymmetric epoxidation of trans-but-2-en01 using 
L-( +)-di-isopropyl tartrate.6 After protection of (4) as a trityl 
ether (Ph,CCl, NEt,, 4-N, N-dimethylaminopyridine),7 the 
resulting ( 5 )  was treated with 1-trimethylsilylvinylmagnesium 
bromide in the presence of a catalytic amount of CuI to give 
alcohol (6) as the sole product [equation (2)] .g Deprotection 
of crude (6) in aqueous CHC12C02H gave (7) [53% overall 
yield from (4)]. Treatment of (7) with NaI04 afforded the 
optically active aldehyde (R)-(1) ([a]# +77.0° (c 1.04, 

1- Parts of this report were presented at the 49th Annual Meeting of 
the Japan Chemical Society, April 1984, Tokyo. 

Iii 

an t i  - ( 3 R ,  4 R ) - ( 2 ) ;  X =SiMe3 
anti - ( 3 S ,  4 S ) - ( 2 ) ;  X =SiMe3 

ant i  - (3 /?14S) - (3 ) ;  X = H  
an t i  -(3S , 4 R ) - ( 3 ) ;  X = H  

Reagents: i ,  EtMgBr; ii, for (2): CrO, then NaBH,. 

CHC13)} in 90% yield. Enantiomeric purity of (R) - (1 )  was 
confirmed to be >95% by 1H n.m.r. spectroscopy using the 
chiral shift reagent (+)-tris[di(perfluoro-2- 

Pr(DPPM)3].9 The aldehyde (S)-(1) (>%YO e.e.) {[aID25 
-75.6' (c 0.516, CHC13)) was synthesized using the same 
method starting from (8) , which was obtained by epoxidation 
of trans-but-2-en01 using D-( -)-di-isopropyl tartrate.6 

The products syn- and anti-(2) derived from the reaction of 
(R)-( 1) or (S)-( 1) with ethylmagnesium bromide are sum- 
marized in Table 1. The specific rotations of protodesilylated 

propoxypropion yl)methanato]praseodymium( 111) [( + >- 
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Table 1. Absolute configuration and rotation of (2) and (3) prepared by the procedure shown in equation (1). 

(2) (X = SiMe3) (3) (X = H) 
Configurationa [a]Dz5 (c in CHCl3) Configuration" [a]D2' (c  in CHC13) 

syn-(3R ,4S) -26.9' (1.04)b sy n- (3s ,4S) -45.0" (0.952)b 
anti-(3R ,4R) -13.9' (1.41)b anti-(3S,4R) -12.2" (0.426)b 

anti-( 3S,4S) + 14.0" (0.998) anti-(3R ,4S) + 12.5' (0.880) 
syn-( 3s,  4R) +26.2" (1.00) syn-(3R ,4R) +45.0" (0.600) 

a Diastereoisomeric purities were >99%. b Optical purities (ca. 95% e.e.) were determined by converting them into the known compounds 
(9) and (10); see text. 

Me9Si OH 

(41 ,  R =H (6),R=Ph,C 
(5  1, R = Ph3C (7),R=H 

(9) 

?H 
iii. iv. v. vi M e 0 2 C , p  

anti  - ( 3 S . 4 R ) - ( 3 )  - 
(10) 

Scheme 1. Reagents: i, CISiEt,, irnidazole, N,N-dirnethylformamide; 
ii, O3 then Me2S; iii, PhCH2Br, KH; iv, O3 then Jones' reagent; v,  
CH2N2; vi, H2, Pd-C. 

I 
Ph ( R  1 - (12) 

L- Selectr ide J (4s) - (11) 

R1 = R2 = H 
R* = H, R2 = alkyl 
R1 = alkyl, R2 = H 

products (3) are also shown in Table 1. Although the [aID 
values of the pairs of enantiomers indicate that each product 
has high optical purity, this was confirmed by converting 
syn-(3S,4S)-(3) and anti-(3S74R)-(3) into the known com- 

pounds (9)lO and ( lO) , l l  respectively, as shown in Scheme 1. 
Optical purities of (9) and (10) were found to be ca. 95% e.e. 
by comparison of the rotations with the literature values.$ 

Tsuchihashi et al. have independently found that reduction 
of optically active (R) - (  12) with L-Selectride proceeds highly 
selectively to afford anti-products (3R ,4R)-( 13).12 They pre- 
pared (R) - (  12) by Lewis acid-mediated pinacol type rear- 
rangement of (4S)-(11).13 

In summary, enantioselective (ca. 95% e.e.) synthesis of all 
the four possible P-methyl-homoallyl alcohols (2) and (3) has 
been achieved. 

The chiral shift reagent (+)-Pr(DPPM), was provided by 
Professor N. Ishikawa of this Institute. 
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$ (9): [ a p 7  -47.5" (c  0.568, CHC13) {the enantiomer of (9) (ref. 10) 
[(Y]D27 -49.8"). (10): [aID25 -12,2" (c 0.82, CHCl3) {the calculated 
value for pure (10) ref. 11: [aID25 -12.9"). 




