Intramolecular Participation in Hypervalent Iodine Oxidation. The Synthesis of **Coumaran-3-ones, Aurone, and Isoaurone**

Robert M. Moriarty,** Om Prakash,* Indra Prakash,* and H. A. Musallam^b

a University of Illinois Chicago, Department of Chemistry Chicago, Illinois 60680, U.S.A. b Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Department of Army, Washington, D.C. 20307, U.S.A.

Oxidation of o-hydroxyphenyl alkyl ketones with Phl(OAc)₂/KOH-MeOH leads to 2,2-dimethoxycoumaran-3-ones which in the case of o -hydroxy- α -phenylpropiophenone offers a convenient route to aurone and isoaurone.

Oxidation of various acetophenone derivatives with PhI-(OAc)₂/KOH-MeOH yields the corresponding α-hydroxydimethyl acetal.¹ In this transformation $\overline{\overline{O}}$ Me plays the role of an external nucleophile.

We now show that an o-hydroxy group in various substi-

tuted o -hydroxyacetophenones acts analogously as an intramolecular nucleophile in the reductive cleavage of the C-I bond $[(A) \rightarrow (B)$, Scheme 1]. A series of substituted o-hydroxyacetophenones $(1a-d)$ were treated with excess of $PhI(OAc)_2$ in KOH-MeOH to yield the corresponding

Reagent: i, PhI(OAc)₂, KOH-MeOH, 0° C, then raised to room temperature.

Reagent: i, dilute H₂SO₄, heat.

Scheme 2. Reagent: i, PhI(OAc)₂, KOH-MeOH.

coumaran-3-ones (2a-d).† Acid treatment of (2d) yielded a **mixture of aurone (3) and isoaurone (4) in** 60% **yield as a 1** : **1** mixture which was separated by t.l.c.^{\ddagger} A mechanism for the

t **(2a), 20%,** oil, i.r. (neat): **1740** cm-1; 1H n.m.r. 6: (CDC13) **3.5 (s,** 6H, OCH,), **6.68-7.7** (m, **4H)** [the 1H n.m.r. spectrum of **(2a)** has been reported: 3.54 (OCH₃); S. Antus E. Baitz-Gács, F. Boross, M. Nogradi, and A. Solyom, *Liebigs Ann. Chem.,* **1980, 12711;** *mlz* **194(66%)** *M+,* **163(71)** *M+* -OCH3, **166(59)** *M+* -CO, **120(23)** M+-C(OCH3)2, **121 (100)** M+-[C(OCH3)(OCH2)]. **(2b), 35%,** oil, i.r. (neat): **1730** cm-1; 6: (CDCI3) **1.55 (s, 3H,** CH,), **3.26 (s,** 3H, OCH₃), and 6.9-7.8 (*m*, $4H$); m/z 178(38) M^+ , 147(14) M^+ -OCH₃, **150(21)** M+-CO, **148(33)** M+-CH20, **91(100). (2c), 21%,** m.p. 59-60 "C, i.r. (Nuiol): **1730** cm-l; 6: (CDCl,) **2.33 (s,** 3H, CH,), **2.5 (s,** 3H, CH,), **3.4** (s, 6H, OCH,), **6.6 (s, 2H);** *mlz* **222(44)** *M+,* **191(43)** M^+ – OCH₃, 192(10) M^+ – CH₂O, 148(14) M^+ – C(OCH₃)₂, 132(100). **(2d)** was obtained from **(Id), 40%,** oil, i.r. (neat): **1725** cm-1; 6: (CDC13) **3.15 (s,** 5H, CH2 and OCH,), **6.63-7.4** (m, **9H,** aromatic); *mlz* **254(16)** *M+,* **223(2)** M+-OCH3, **163(100)** M+-CH2Ph. The conversion of **(la)** and **(lc)** into **(2a)** and **(2c),** respectively, is **30%** and **(lb)** and **(Id)** into **(2b)** and **(2d),** respectively is *50%* using equimolar amounts of $PhI(OAc)_2$ and ketone. The conversion is not increased with 2 or 3 equiv. of PhI(OAc)₂ relative to the ketone. Yields are of the pure isolated compounds by chromatography.

 \ddagger Aurone (3), i.r. (CHCl₃): 1710 cm⁻¹; ¹H n.m.r. δ: (CDCl₃) 6.9 (s, C=CH); 13C n.m.r. 6: (CDCI3) **111.19** (s, C=CH), **183.5** (C=O); *mlz* **222(100)** *M+,* **120(34)** M+-C=CHPh. Isoaurone **(4),** i.r. (CHCl,): **1780** cm-l, 6: (CDC13) **7.86 (s,** C=CH); 13C n.m.r. 6: (CDC13) **133.6** $(k, C=CH)$, 170 $(C=O)$; m/z 222(100) M^+ , 194(39) M^+ - CO. ¹H, ¹³C N.m.r. and i.r. data for **(3)** and **(4)** are in excellent agreement with the data reported for 6-methoxyaurone and 6-methoxyisoaurone (ref. **2).**

reactions (1a-d) \rightarrow (2a-d), illustrated for (1a) \rightarrow (2a), is **shown in Scheme 2.**

Coumaran-3-one (7)3 was separately subjected to the reaction conditions and yielded (2a) in *50%* **yield. Intermediate (5) is based upon the general mechanism** *[viz.* **intermediate (A)] presented in Scheme 1. Intramolecular dis**placement with reductive elimination $[(5) \rightarrow (7)]$, a 5-exo-tet **process, is stereoelectronically favourable.4 Alternative inter**molecular attack by MeO^{-} $[(5) \rightarrow (6)]$ is possible, but $[(6) \rightarrow (7)]$ is stereoelectronically unfavourable.

Hyperiodination $[(7) \rightarrow (8)]$, bimolecular reductive displacement $[(8) \rightarrow (9)]$, followed by the same sequence, yields **(2a). This pathway also is considered to occur for (lb** $d) \rightarrow (2b-d)$.

The formation of aurone (3) from (2d) results from acid-catalysed loss of MeOH. Isoaurone (4) is a rearrangement product which may result from a phenonium ion type intermediate (11).

We thank the U.S.A.M.R.D.C. and the Petroleum Research Fund for support of this work.

Received, 14th May 1984; Corn. 658

References

- **1 R.** M. Moriarty, H. Hu, and *S.* C. Gupta, *Tetrahedron Lett.,* **1981, 22,1283;** R. M. Moriarty, L. *S.* **John,** and P. C. Du, *J. Chem.* **SOC.,** *Chem. Comrnun.,* **1981,641;** R. M. Moriarty, *S.* C. Gupta, H. Hu, D. R. Berenschot, and K. B. White, *J. Am. Chem.* **SOC., 1981,103, 686;** R. M. Moriarty and H. Hu, *Tetrahedron Lett.,* **1981,22,2747; R.** M. Moriarty and K. C. Hou, *ibid..* **1984, 25, 691;** in this paper the advantage of using o-iodosylbenzoic acid in this oxidation reaction is described.
- 2 T. I. Gray, A. Pelter, and R. S. Ward, *Tetrahedron*, 1979, 35, 2539.
- **3** K. Fries and W. Pfaffendorf, *Chem. Ber.,* **1910,43,212.**
- **4** J. **E.** Baldwin, *J. Chem. Soc., Chem. Commun.,* **1976, 738.**
- *5* G. Stork, L. D. Cama, and D. R. Coulson, *J. Am. Chem. Soc.,* **1974, 96, 5268;** G. Stork and J. F. Cohen, *ibid.,* p. **5270.**

§ Stork *et. al.* (ref. 5) have demonstrated convincingly that S_{N2} ring-opening of oxiranes requires a colinear arrangement of the nucleophile and C-0 bond undergoing cleavage. This stereoelectronic effect is not met in $(6) \rightarrow (7)$ even though an entropic advantage would exist in this intramolecular process. Both the favoured $(5) \rightarrow (6)$ and unfavoured $(6) \rightarrow (7)$ transformations are implicit in Eschenmoser's demonstration of the necessity for colinearity of reacting groups in intramolecular S_N 2 processes (L. Tenud, S. Faroog, **J.** Seibl, and A. Eschenmoser, *Helv. Chim. Acta,* **1970, 53, 2059).**