A Novel Unsaturated (Alkyne)titanium(μ) Complex (η^5 -C₅H₅)(η^5 -C₅Me₅)Ti(Ph–C=C–Ph) and its Coupling Reaction with Carbon Dioxide

Bernard Demerseman, Roger Mahé, and Pierre H. Dixneuf

Laboratoire de Chimie de Coordination Organique (ERA CNRS 477), Université de Rennes, 35042 Rennes Cédex, France

The titanium derivatives CpCp'TiX₂ (Cp = η^5 -C₅H₅; Cp' = η^5 -C₅Me₅; X = Me, Ph, or CO) have been synthesized and the reaction of CpCp'Ti(CO)₂ with diphenylacetylene and trimethylphosphine affords the unsaturated (alkyne)titanium(u) complex CpCp'Ti(C₂Ph₂) which readily adds carbon dioxide to give the metallacyclic compound CpCp'Ti-C(Ph)=C(Ph)-C(=O)O via carbon-carbon bond formation.

Unsaturated titanium(II) intermediates are expected to promote the reduction of substrates^{1,2} and unstable species arising from the precursor Cp₂Ti(CO)₂ (Cp = η^5 -C₅H₅) have been shown to be useful for the reduction of carbon dioxide² or alkynes,³ and the use of C₅Me₅ groups in Cp'₂TiCl₂ (Cp' = η^5 -C₅Me₅) has allowed the isolation of highly reactive species such as [Cp'₂Ti],¹ (Cp'₂Ti)₂N₂,¹ or Cp'₂Ti(C₂H₄).⁴ In the course of our studies on the activation of alkynes³ we have studied the mixed-ring CpCp'TiX₂ systems and we now report the isolation and characterisation of the formally 16 electron species CpCp'Ti(Ph–C=C–Ph) and its reactivity towards carbon dioxide. In an attempt to find a convenient, large scale route to the precursor CpCp'TiCl₂,⁵ obtained previously from Cp'TiCl₃, the reaction of Cp'Li with CpTiCl₂ in tetrahydrofuran (THF) at room temperature followed by reoxidation with HCl and extraction with CHCl₃ led us to isolate purple needles of (1)⁺ in 50% yield.

The displacement of the chloride groups of (1) was easily performed by treatment with PhLi or MeLi in diethyl ether whereupon the orange-red complex $(2)^{\ddagger}$ (60%) and the

[†] Satisfactory elemental analyses have been obtained.

orange compound (3)[†] (90%) were obtained respectively [¹H n.m.r. (CD₂Cl₂) δ (2) 6.83 (Ph), 5.89 (Cp), 1.73 (Cp'); (3) 5.94 (Cp), 1.88 (Cp'), -0.47 (Me)]. The stability of (3) is noteworthy: whereas Cp₂TiMe₂ is unstable in the solid state⁶ and Cp'₂TiMe₂ loses one equivalent of methane in refluxing toluene,¹ complex (3) is air stable at room temperature for several months and was unchanged after two days in refluxing toluene.

The almost quantitative formation of the red-brown airsensitive dicarbonyltitanium(11) complex (4)† [85%, v_{CO} (hexane) 1956, 1875 cm^{-1}] was obtained by reduction of (1) with Zn powder under a carbon monoxide atmosphere in a similar way^{7,8} to $Cp_2Ti(CO)_2$ and $Cp'_2Ti(CO)_2$. In these reactions the isolation of the dicarbonyltitanium(II) complex has been significantly improved by the convenient elimination of the resulting ZnCl₂ as a precipitate of ZnCl₂·6 NH₃ when the reaction solution was stirred under an ammonia atmosphere. As a reflection of the formal electron density at the titanium centre, the carbonyl i.r. absorption frequencies of (4) are intermediary between those of Cp₂Ti(CO)₂ (1979, 1897 cm⁻¹)⁸ and those of Cp'₂Ti(CO)₂ (1930, 1850 cm⁻¹).¹ Relevant to this higher electron donating effect of the Cp' ligand, the displacement of one carbonyl of (4) by PMe₃ was not observed in refluxing heptane whereas this reaction occurs readily using Cp₂Ti(CO)₂ in hexane.⁸

By contrast, compound (4) reacts with diphenylacetylene to give (6), but only in the presence of PMe₃ which forms the intermediate adduct (7), equation (1). When (4) was treated with one equivalent of diphenylacetylene in refluxing hexane the formation of the intermediate (5) (v_{CO} 1980 cm⁻¹) took place but no product could be isolated. However, when complex (4) was heated with one equivalent of diphenylacetylene and 2—3 equivalents of PMe₃, after evaporation of volatile products and crystallization of the residue in hexane, red-brown crystals of (6) were isolated in 60% yield. Under similar conditions, Cp₂Ti(CO)₂ gave the yellow, stable Cp₂Ti(PMe₃)(Ph-C=C-Ph).³ However, elemental analysis shows that (6) retains less than 0.1 PMe₃ per Ti. These observations suggest the formation of the intermediate (7) which loses the labile PMe₃ ligand under vacuum.

The isolation of complex (6) points out the novelty of the behaviour of (4). Whereas $Cp_2Ti(CO)_2$ with diphenylacetylene gives $Cp_2Ti(CO)(Ph-C\equiv C-Ph)$ which decomposes at room temperature to form the metallacyclopentadienyl complex⁹ $Cp_2Ti-C(Ph)=C(Ph)-C(Ph)=C(Ph)$, no evidence of formation of such a metallocyclic compound has been obtained starting from (4) or (6). $Cp_2Ti(Ph-C\equiv C-Ph)$ was believed to

exist in solution¹⁰ and Cp'₂Ti(Me-C=C-Me) has been mentioned⁴ but these suggested intermediates require in their syntheses strong reducing agents compared to those in the transformation $(1) \rightarrow (4) \rightarrow (6)$.

Compound (6) is further characterized by its reaction with carbon monoxide shown in equation (2). Complex (6) in hexane reacts with carbon monoxide (1 atm, room temp.) to afford within a few minutes complex (5) as shown by i.r. [v_{CO} 1980 cm⁻¹, as expected from v_{CO} 1995 cm⁻¹ for the parent compound Cp₂Ti(CO)(Ph-C \equiv C-Ph)⁹] and then the intermediate (5) slowly disappears to generate after two hours the precuror (4) (1956, 1875 cm⁻¹). These reactions also illustrate the reversibility of the transformation (4) \rightarrow (6).

The activation of carbon dioxide, to form a carbon–carbon bond, requires an electron rich metal centre^{11,12} and the unsaturated electron rich complex (6) in hexane reacts smoothly with CO₂ under atmospheric pressure. After one hour a red air-stable precipitate was separated from the black solution and identified as complex (8) [equation (3)], a Ti^{IV} adduct of CO₂ and (6). Complex (8)† decomposes only above 250 °C [43%, i.r. (Nujol) 1640vs cm⁻¹ (CO₂); ¹H n.m.r. δ (CD₂Cl₂) 7.17(Ph), 6.42 (Cp), 1.73 (Cp')]. The structure of the adduct (8) is also supported by the well known tendency of titanium to form stable Ti–O bonds. The transformation (6)→(8) supports the proposal of a Cp₂Ti(benzyne) intermediate in the reaction of Cp₂TiPh₂ with carbon dioxide¹³ under more drastic conditions.

Interestingly, the addition of carbon monoxide to the black residual solution afforded additional complex (8) (11%) with concomitant formation of (4). On the basis of the ability of carbon monoxide to induce dismutation reactions of Till complexes,^{7,14,15} we suggest the formation of a binuclear Ti^{III} complex such as (9), resulting formally from the reaction of (8)with (6), and able to lead by dismutation with CO to the Ti^{IV} complex (8) and Ti^{II} compound (4). To support this hypothesis, as PMe_3 is able to co-ordinate the titanium atom of (6) and consequently to prevent the formation of the intermediate (9), complex (6) was treated with CO_2 in the presence of more than one equivalent of PMe_3 in hexane and gave complex (8) in 60% yield. No further reaction with carbon monoxide was observed in this case. Moreover, the lability of the Ti-PMe₃ bond does not hinder the reaction of (6) with CO_2 whereas no reaction was observed with CO2 and Cp2Ti(PMe3)-(Ph-C=C-Ph) which has a strong enough Ti-PMe₃ bond to allow isolation.3

$$[CpCp'Ti^{III}-C(Ph)=C(Ph)-CO_2-Ti^{III}Cp'Cp]$$
(9)

These reactions with CO_2 indicate that besides the required electron density at the metal centre, the unsaturated co-

ordination of the metal atom plays a major role in the coupling reaction of an unsaturated substrate with carbon dioxide.

Received, 25th June 1984; Com. 893

References

- 1 J. E. Bercaw, R. H. Marvich, L. G. Bell, and H. H. Brintzinger, J. *Am. Chem. Soc.*, 1972, **94**, 1219.
- 2 G. Fachinetti, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Am. Chem. Soc., 1979, 101, 1767.
- 3 B. Demerseman and P. H. Dixneuf, J. Chem. Soc., Chem. Commun., 1981, 665.
- 4 S. A. Cohen, P. R. Auburn, and J. E. Bercaw, J. Am. Chem. Soc., 1983, 105, 1136.
- 5 K. C. Ott, E. J. M. De Boer, and R. H. Grubbs, *Organometallics*, 1984, **3**, 223; and references cited.
- 6 P. C. Wailes, R. S. P. Coutts, and H. Weigold, 'Organometallic Chemistry of Titanium, Zirconium and Hafnium,' Academic Press, New York, 1974.

- 7 B. Demerseman, G. Bouquet, and M. Bigorgne, J. Organomet. Chem., 1975, 101, C 24.
- 8 B. Demerseman, G. Bouquet, and M. Bigorgne, J. Organomet. Chem., 1977, 132, 223.
- 9 G. Fachinetti, C. Floriani, F. Marchetti, and M. Mellini, J. Chem. Soc., Dalton Trans., 1978, 1799.
- 10 V. B. Shur, S. Z. Bernadyuk, V. V. Burlakov, V. G. Andrianov, A. I. Yanovsky, Yu. T. Struckhov, and M. E. Vol'pin, J. Organomet. Chem., 1983, 243, 157.
- 11 D. J. Darensbourg and R. A. Kudaroski, Adv. Organomet. Chem., 1983, 22, 129.
- 12 A. L. Lapidus and Yang Yung Ping, Russ. Chem. Rev., (Engl. Transl.), 1981, 50, 63.
- 13 I. S. Kolomnikov, T. S. Lobeeva, V. V. Gorbachevskaya, G. G. Aleksandrov, Yu. T. Struckhov, and M. E. Vol'pin, J. Chem. Soc., Chem. Commun., 1971, 972.
- 14 F. Bottomley and H. H. Brintzinger, J. Chem. Soc., Chem. Commun., 1978, 234.
- 15 E. J. M. De Boer, L. C. Ten Cate, A. G. J. Staring, and J. H. Teuben, J. Organomet. Chem., 1979, **181**, 61.