A Novel Unsaturated (Alkyne)titanium(**II) Complex (n⁵-C₅H₅)(n⁵-C₅Me₅)Ti(Ph–C≡C–Ph) and its Coupling Reaction with Carbon Dioxide**

Bernard Demerseman, Roger Mahe, and Pierre H. Dixneuf

Laboratoire de Chimie de Coordination Organique (ERA CNRS 477), Université de Rennes, 35042 Rennes Cédex, *France*

The titanium derivatives CpCp'TiX₂ (Cp = η ⁵-C₅H₅; Cp' = η ⁵-C₅Me₅; X = Me, Ph, or CO) have been synthesized and the reaction of CpCp'Ti(CO)₂ with diphenylacetylene and trimethylphosphine affords the unsaturated (alkyne)titanium(ii) complex CpCp'Ti(C₂Ph₂) which readily adds carbon dioxide to give the metallacyclic compound $C_pC_p'Ti-C(Ph)=C(Ph)-C(=O)O$ *via* carbon-carbon bond formation.

Unsaturated titanium (II) intermediates are expected to promote the reduction of substratesl.2 and unstable species arising from the precursor $Cp_2Ti(CO)_2 (Cp = \eta^5-C_5H_5)$ have been shown to be useful for the reduction of carbon dioxide2 or alkynes,³ and the use of C₅Me₅ groups in Cp'₂TiCl₂ (Cp' = η^5 -C₅Me₅) has allowed the isolation of highly reactive species such as $[Cp'_{2}Ti],$ ¹ $(Cp'_{2}Ti)_{2}N_{2}$,¹ or $Cp'_{2}Ti(C_{2}H_{4})$.⁴ In the course of our studies on the activation of alkynes³ we have studied the mixed-ring $CpCp'TiX_2$ systems and we now report the isolation and characterisation of the formally 16 electron species CpCp'Ti(Ph-C=C-Ph) and its reactivity towards carbon dioxide.

In an attempt to find a convenient, large scale route to the precursor $Cp\overline{C}p'TiCl_2$,⁵ obtained previously from $Cp'TiCl_3$, the reaction of $Cp'L$ with $CpTiCl₂$ in tetrahydrofuran (THF) at room temperature followed by reoxidation with HC1 and extraction with CHCl₃ led us to isolate purple needles of (1)[†] in 50% yield.

The displacement of the chloride groups of **(1)** was easily performed by treatment with PhLi or MeLi in diethyl ether whereupon the orange-red complex (2) ^{\dagger} (60%) and the

^{&#}x27;F Satisfactory elemental analyses have been obtained.

orange compound (3) ⁺ (90%) were obtained respectively [¹H] n.m.r. (CD_2Cl_2) δ (2) 6.83 (Ph), 5.89 (Cp), 1.73 (Cp'); **(3)** 5.94 (Cp), 1.88 (Cp'), -0.47 (Me)]. The stability of **(3)** is noteworthy: whereas Cp_2TiMe_2 is unstable in the solid state⁶ and $Cp'_{2}TiMe_{2}$ loses one equivalent of methane in refluxing toluene,' complex **(3)** is air stable at room temperature for several months and was unchanged after two days in refluxing toluene.

The almost quantitative formation of the red-brown airsensitive dicarbonyltitanium(II) complex (4)[†] [85%, v_{CO} (hexane) 1956, 1875 cm-I] was obtained by reduction of **(1)** with Zn powder under a carbon monoxide atmosphere in a similar way^{7,8} to $Cp_2Ti(CO)_2$ and $Cp'_2Ti(CO)_2$. In these reactions the isolation of the dicarbonyltitanium (II) complex has been significantly improved by the convenient elimination of the resulting $ZnCl₂$ as a precipitate of $ZnCl₂·6 NH₃$ when the reaction solution was stirred under an ammonia atmosphere. As a reflection of the formal electron density at the titanium centre, the carbonyl i.r. absorption frequencies of **(4)** are intermediary between those of $Cp_2Ti(CO)_2$ (1979, 1897 cm⁻¹)⁸ and those of $Cp'_{2}Ti(CO)_{2}$ (1930, 1850 cm⁻¹).¹ Relevant to this higher electron donating effect of the Cp' ligand, the displacement of one carbonyl of (4) by PMe₃ was not observed in refluxing heptane whereas this reaction occurs readily using $Cp_2Ti(CO)_2$ in hexane.⁸

By contrast, compound **(4)** reacts with diphenylacetylene to give (6), but only in the presence of PMe₃ which forms the intermediate adduct **(7),** equation (1). When **(4)** was treated with one equivalent of diphenylacetylene in refluxing hexane the formation of the intermediate (5) (v_{CO} 1980 cm⁻¹) took place but no product could be isolated. However, when complex **(4)** was heated with one equivalent of diphenylacetylene and $2-3$ equivalents of PMe₃, after evaporation of volatile products and crystallization of the residue in hexane, red-brown crystals of **(6)** were isolated in 60% yield. Under similar conditions, $Cp_2Ti(CO)_2$ gave the yellow, stable Cp₂Ti(PMe₃)(Ph-C=C-Ph).³ However, elemental analysis shows that (6) retains less than 0.1 PMe₃ per Ti. These observations suggest the formation of the intermediate **(7)** which loses the labile $PMe₃$ ligand under vacuum.

The isolation of complex **(6)** points out the novelty of the behaviour of (4) . Whereas $Cp_2Ti(CO)_2$ with diphenylacetylene gives $Cp_2Ti(CO)(Ph-C\equiv C-Ph)$ which decomposes at room temperature to form the metallacyclopentadienyl complex⁹ Cp₂Ti–C(Ph)=C(Ph)–C(Ph)=C(Ph), no evidence of formation of such a metallocyclic compound has been obtained starting from **(4)** or **(6)**. $Cp_2Ti(Ph-C\equiv C-Ph)$ was believed to

exist in solution¹⁰ and $Cp'_2Ti(Me-C\equiv C-Me)$ has been mentioned4 but these suggested intermediates require in their syntheses strong reducing agents compared to those in the transformation $(1) \rightarrow (4) \rightarrow (6)$.

Compound **(6)** is further characterized by its reaction with carbon monoxide shown in equation (2). Complex **(6)** in hexane reacts with carbon monoxide (1 atm, room temp.) to afford within a few minutes complex (5) as shown by i.r. $[v_{CO}]$ 1980 cm⁻¹, as expected from v_{CO} 1995 cm⁻¹ for the parent compound $Cp_2Ti(CO)(Ph-C\equiv C-Ph)^9$] and then the intermediate *(5)* slowly disappears to generate after two hours the precuror **(4)** (1956,1875 cm-1). These reactions also illustrate the reversibility of the transformation $(4) \rightarrow (6)$.

The activation of carbon dioxide, to form a carbon-carbon bond, requires an electron rich metal centre^{11,12} and the unsaturated electron rich complex **(6)** in hexane reacts smoothly with $CO₂$ under atmospheric pressure. After one hour a red air-stable precipitate was separated from the black solution and identified as complex (8) [equation (3)], a Ti^{IV} adduct of CO₂ and **(6)**. Complex **(8)**^{\dagger} decomposes only above 250 °C [43%, i.r. (Nujol) 1640vs cm⁻¹ (CO₂); ¹H n.m.r. δ (CD2C12) 7.17(Ph), **6.42** (Cp), 1.73 (Cp')]. The structure of the adduct **(8)** is also supported by the well known tendency of titanium to form stable Ti-0 bonds. The transformation $(6) \rightarrow (8)$ supports the proposal of a Cp₂Ti(benzyne) intermediate in the reaction of Cp_2TiPh_2 with carbon dioxide¹³ under more drastic conditions.

Interestingly, the addition of carbon monoxide to the black residual solution afforded additional complex **(8)** (11%) with concomitant formation of **(4).** On the basis of the ability of carbon monoxide to induce dismutation reactions of Ti^{III} complexes, $7,14.15$ we suggest the formation of a binuclear Ti^{III} complex such as **(9),** resulting formally from the reaction of **(8)** with (6) , and able to lead by dismutation with CO to the Ti^{IV} complex **(8)** and Ti" compound **(4).** To support this hypothesis, as PMe_3 is able to co-ordinate the titanium atom of (6) and consequently to prevent the formation of the intermediate **(9),** complex (6) was treated with $CO₂$ in the presence of more than one equivalent of $PMe₃$ in hexane and gave complex (8) in 60% yield. No further reaction with carbon monoxide was observed in this case. Moreover, the lability of the $Ti-PMe₃$ bond does not hinder the reaction of (6) with CO₂ whereas no reaction was observed with CO_2 and $CP_2Ti(PMe_3)$ -(Ph-C \equiv C-Ph) which has a strong enough Ti-PMe₃ bond to allow isolation.3

$$
[CpCp'TiIII-C(Ph)=C(Ph)-CO2-TiIIICp'Cp]
$$

(9)

These reactions with $CO₂$ indicate that besides the required electron density at the metal centre, the unsaturated coordination of the metal atom plays a major role in the coupling reaction of an unsaturated substrate with carbon dioxide.

Received, 25th June 1984; Corn. 893

References

- 1 J. E. Bercaw, R. H. Marvich, L. G. Bell, and H. H. Brintzinger,J. *Am. Chem. SOC.,* 1972, **94,** 1219.
- 2 G. Fachinetti, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. *Am. Chem.* SOC., 1979, **101,** 1767.
- 3 B. Dernersernan and P. **H.** Dixneuf, *J. Chem.* SOC., *Chem. Commun.,* 1981, 665.
- **4 S.** A. Cohen, P. R. Auburn, and J. E. Bercaw,J. *Am. Chem. SOC.,* 1983, **105,** 1136.
- *5* K. C. Ott, E. J. M. De Boer, and R. H. Grubbs, *Organomefallics,* 1984, **3,** 223; and references cited.
- **6 P.** C. Wailes, R. **S.** P. Coutts, and H. Weigold, 'Organometallic Chemistry of Titanium, Zirconium and Hafnium,' Academic Press, New York, 1974.
- 7 B. Dernerseman, G. Bouquet, and M. Bigorgne, *J. Organomef. Chem.,* 1975, **101,** *C* 24.
- 8 B. Dernersernan, G. Bouquet, and M. Bigorgne, *J. Organomer. Chern.,* 1977, **132,** 223.
- 9 G. Fachinetti, C. Floriani, **F.** Marchetti, and M. Mellini, *1. Chem.* SOC., *Dalton Trans.,* 1978, 1799.
- 10 V. B. Shur, **S.** Z. Bernadyuk, V. V. Burlakov, V. G. Andrianov, A. **I.** Yanovsky, Yu. T. Struckhov, and M. E. Vol'pin, *J. Organomet. Chem.,* 1983, **243,** 157.
- 11 D. J. Darensbourg and R. A. Kudaroski, Adv. Organomet. *Chem.,* 1983, **22,** 129.
- 12 A. L. Lapidus and Yang Yung Ping, *Russ. Chem. Rev., (Engl. Transl.),* 1981, **50,** 63.
- 13 **I. S.** Kolornnikov, T. **S.** Lobeeva, V. V. Gorbachevskaya, G. G. Aleksandrov, Yu. T. Struckhov, and M. E. Vol'pin, *J. Chem. SOC., Chem. Commun.,* 1971, 972.
- 14 F. Bottomley and H. H. Brintzinger, *J. Chem. Soc.*, *Chem. Commun.,* 1978, 234.
- 15 E. J. **M.** De Boer, L. C. Ten Cate, **A** G. J. Staring. and J. H. Teuben, *J. Organomef. Chem.,* 1979, **181,** 61.