Biosynthesis of Tajixanthone and Shamixanthone by *Aspergillus variecolor:* Incorporation of Oxygen-18 Gas

Esfandiar Bardshiri,^a C. Rupert McIntyre,^a Thomas J. Simpson,^{a*} Richard N. Moore,^b Laird A. Trimble,^b and John C. Vederas^{b*}

^a Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, U.K.

^b Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Mass spectral and ¹³C n.m.r. analyses of tajixanthone (1) and shamixanthone (2) formed during growth of *Aspergillus variecolor* under atmospheres containing [¹⁸O₂] oxygen gas showed incorporation of four and three ¹⁸O labels per molecule of (1) and (2), respectively, and provided information about the mode of xanthone ring formation.

Mycelial pigments like tajixanthone (1) and shamixanthone $(2)^1$ as well as various meroterpenoids² illustrate how *Aspergillus* species can combine polyketide and terpenoid precursors to form secondary metabolites which have often undergone extensive oxidative elaboration. The isolation of a number of closely related xanthones³⁻⁵ and ¹³C and ²H labelling studies^{6,7} on tajixanthone strongly support the

biosynthetic pathway outlined in Scheme 1. Carbon labelling results suggest that an acetate-derived octaketide precursor cyclizes to an anthrone which is hydroxylated, *O*-prenylated by dimethylallyl pyrophosphate, and oxidatively cleaved to a benzophenone derivative, either directly or after oxidation to an anthraquinone. Observation of two distinct carbon labelling patterns present in equal amounts in ring c of (1) implies

Table 1. ¹⁸O Isotopically-shifted resonances in the ¹³C n.m.r. spectra^a of tajixanthone (1) and shamixanthone (2).

Carbon	δ(1)	$\begin{array}{c} \Delta \delta \left(1 \right) \\ \left(\times 100 \right) \end{array}$	¹⁶ O : ¹⁸ O (1) ^d	δ(2)	$\begin{array}{c} \Delta \delta \left(2 \right) \\ (\times 100) \end{array}$	¹⁶ O : ¹⁸ O (2) ^d
13	184.0	2.7 ^b				
1	160.4°	1.0	79:21	159.7	1.0e	
10	152.9°	2.3	80:20	152.8	2.5	71:29
11	152.0	2.4	77:23	152.2	2.3	73:27
7	149.5	1.5	61:39	149.4	1.6	53:47
19	64.5	2.3	66:34	64.5	2.5	55:45
15	63.24	3.3	64:36			
25	63.16	1.5	66:34	63.2	1.5	60:40
16	58.5	4.1	64:36			

^a Spectra run at 100.6 and 90.6 MHz; for experimental conditions see ref. 9. ^b Enriched by sodium $[1^{-13}C_1^{18}O_2]$ acetate only; all others enriched by ${}^{18}O_2$. ^c These assignments were originally reversed in ref. 6. ^d Approximate ($\pm 5\%$) ratios from peak areas. ^c Not resolved completely.

 $R = CH_2CH=CMe_2$ OPP = Pyrophosphate Scheme 1

the intermediacy of a symmetrical dihydroxyphenyl moiety which is free to rotate prior to cyclization to a xanthone.⁷ Since the detection of ¹⁸O-induced isotope shifts in ¹³C n.m.r.⁸ has proved useful in determining the mode of xanthone ring formation in ravenelin⁹ and sterigmatocystin,¹⁰ we have studied the incorporation of ¹⁸O₂ gas into tajixanthone (1) and shamixanthone (2).

A fermentation of Aspergillus variecolor¹ in which the normal atmosphere was replaced with one containing ¹⁸O₂ gas (98.7% isotopic purity) gave tajixanthone (1), the mass spectrum of which showed the presence of four ¹⁸O atoms per molecule. The 100.6 and 90.6 MHz ¹³C n.m.r. spectra of a mixture of this and unlabelled material displayed isotopicallyshifted resonances for eight of the nine oxygen-bearing carbons (Table 1). Only the carbonyl oxygen at C-13 remained completely unlabelled in this experiment. Within experimental error, the relative amount of ¹⁸O incorporated at C-1 and at C-10 is half of that at the other labelled sites. Taken together with the mass spectral results, this shows that in a particular molecule of tajixanthone (1) either the oxygen at C-1 or the one at C-10 was labelled, but not both. This confirms the intermediacy and oxidative origin of a conformationally labile benzophenone which has an axis of symmetry in a dihydroxyphenyl ring. More importantly, the results demonstrate that xanthone ring closure must proceed almost exclusively by a Michael addition-elimination¹¹ process in which the ring c oxygen attacks the ring A carbon with ultimate loss of the ring A oxygen at C-11 (paths a_2 and b_2). Cyclization in the opposite sense with retention of the ring A oxygen (paths a_1 and b_1) is very minor if it occurs at all.

The presence of ¹⁸O at C-25 and the previously reported loss of ²H from acetate at that position⁷ suggest oxidative cleavage of an anthraquinone rather than anthrone precursor. Mass spectral analysis of the molecular ion region of (1) obtained from a fermentation utilizing a mixture of ¹⁶O₂ and ¹⁸O₂ shows that each aerobically-derived oxygen atom is introduced separately by mono-oxygenation. Thus the involvement of dioxygenase-derived dioxetanes¹² or endoperoxides^{13,14} which have been proposed as intermediates in the cleavage mechanism can be ruled out. Presumably cleavage occurs *via* a biological Baeyer-Villiger type oxidation¹⁵ to give an intermediate lactone which can undergo direct reduction to the hemiacetal (*cf.* arugosin A/B³) and thence to the benzophenone.

In a separate experiment sodium $[1^{-13}C, {}^{18}O_2]$ acetate (90% ${}^{18}O)$ was fed to cultures of *A. variecolor* grown in a normal atmosphere, and the resulting tajixanthone (1) was analysed by ${}^{13}C$ n.m.r. Unfortunately the incorporation level was too low to detect isotope shifts at any carbons except C-13, the C-O bond of which was thereby shown to be acetate-derived.

As expected, shamixanthone (2) isolated in the same experiment with ¹⁸O₂ showed, by mass spectral analysis, the incorporation of three ¹⁸O atoms per molecule. Although the isotope shift in the ¹³C n.m.r. of (2) at C-1 could not be completely resolved for accurate determination of the ¹⁶O: ¹⁸O ratio, the presence of ¹⁸O at that site and the reduced ¹⁸O content of the xanthone ring oxygen relative to other sites (Table 1) confirm the operation of the same biosynthetic pathway as that of tajixanthone (1). It is interesting to note that in ravenelin biosynthesis the same type of xanthone ring closure (paths a_2 and b_2) occurs with retention of the oxygens of a symmetrical dihydroxyphenyl moiety.9 In contrast, retention of oxygen from the other ring and a single carbon labelling pattern during sterigmatocystin biosynthesis¹⁰ suggest an oxidative coupling mechanism rather than additionelimination for xanthone formation in that case.^{16,17}

We thank the S.E.R.C., N.A.T.O., and the Natural

Sciences and Engineering Research Council of Canada (N.S.E.R.C.) for financial support.

Received, 4th July 1984; Com. 951

References

1406

- 1 K. K. Chexal, C. Fouweather, J. S. E. Holker, T. J. Simpson, and K. Young, J. Chem. Soc., Perkin Trans. 1, 1974, 1584.
- 2 C. R. McIntyre, T. J. Simpson, D. J. Stenzel, A. J. Bartlett, E. O'Brien, and J. S. E. Holker, J. Chem. Soc., Chem. Commun., 1982, 781.
- 3 W. B. Turner and D. C. Aldridge, 'Fungal Metabolites II,' Academic Press, New York, 1983, pp. 156–167, and references therein.
- 4 K. K. Chexal, J. S. E. Holker, T. J. Simpson, and K. Young, J. Chem. Soc., Perkin Trans. 1, 1975, 543.
- 5 K. K. Chexal, J. S. E. Holker, and T. J. Simpson, J. Chem. Soc., Perkin Trans. 1, 1974, 549.
- 6 J. S. E. Holker, R. D. Lapper, and T. J. Simpson, J. Chem. Soc., Perkin Trans. 1, 1974, 2135.

- 7 E. Bardshiri and T. J. Simpson, J. Chem. Soc., Chem. Commun., 1981, 195.
- 8 J. C. Vederas, Can. J. Chem., 1982, 60, 1637 and references therein.
- 9 J. G. Hill, T. T. Nakashima, and J. C. Vederas, J. Am. Chem. Soc., 1982, 104, 1745.
- 10 T. T. Nakashima and J. C. Vederas, J. Chem. Soc., Chem. Commun., 1982, 206.
- 11 R. M. Sandifer, A. K. Battacharya, and T. M. Harris, J. Org. Chem., 1981, 46, 2260 and references therein.
- 12 T. Matsuura, Tetrahedron, 1977, 33, 2869.
- 13 T. Money, Nature, 1963, 199, 592.
- 14 B. Franck, in 'Biosynthesis of Mycotoxins,' ed. P. S. Steyn, Academic Press, New York, 1980, p. 186.
- 15 J. M. Schwab, W. B. Li, and L. P. Thomas, J. Am. Chem. Soc., 1983, 105, 4800.
- 16 T. J. Simpson and D. J. Stenzel, J. Chem. Soc., Chem. Commun., 1982, 890.
- 17 U. Sankawa, H. Shimada, Y. Ebizuka, Y. Yamamoto, H. Noguchi, and H. Seto, *Heterocycles*, 1982, 19, 1053.