Chemical Communications

Number 22 1984

Enantioselective Reductions of Aromatic Ketones with Ammonia–Borane Complexes of Chiral Tetraphenyl-18-crown-6 Derivatives

Billy L. Allwood,^a Hooshang Shahriari-Zavareh,^b J. Fraser Stoddart,^b and David J. Williams^a

^a Department of Chemistry, Imperial College, London SW7 2AY, U.K.

^b Department of Chemistry, The University, Sheffield S3 7HF, U.K.

Enantioselective reductions of prochiral aromatic ketones with adducts formed between ammonia-borane and (2R,3R,11R,12R)- and (2S,3S,11S,12S)-tetraphenyl-1,4,7,10,13,16-hexaoxacyclo-octadecane, (RRRR)-(3) and (SSSS)-(3), have afforded the corresponding (S) and (R) aromatic secondary alcohols with enantiomeric excesses of 20—67%.

Although NH₃BH₃, RNH₂BH₃, and R₂NHBH₃ adducts exhibit^{1,2} excellent (>90%) chemo- and diastereo-selectivities in their reductions of RCHO and R₂CO substrates, high enantiomeric excesses (e.e.s) in the reductions of RCOR' substrates with R*NH₂BH₃ adducts have been much more elusive. Thus, the rather low e.e.s (\leq 5%), obtained³⁻⁵ when BH₃ was bound to PhCH₂C*HMeNRR' and PhC*HMeNH₂, were only slightly improved upon (to *ca.* 21%) by BF₃ activation⁶ of the RCOR' substrates, and (to *ca.* 33%) by employing⁵ RC*H(CO₂Me)NH₂ as the chiral auxiliaries instead of R*NH₂. More recently, RC*H(CH₂OH)NH₂ auxiliaries have afforded⁷ e.e.s approaching 100% and RNH₂BH₃, RR'NHBH₃, and R₂R'NBH₃ adducts modified⁸ with axially chiral 2,2'-dihydroxy-6,6'-dimethylbiphenyl are almost (e.e.s $\leq 84\%$) as good. However, in all these reagents, the chiral auxiliary is covalently bonded to the boron atom and

Table 1. Reductions of aromatic ketones with NH_3BH_3 adducts of 18-crown-6 (1), the $(2R_3R_11IS_12S)$ -tetraphenyl-18-crown-6 derivative (4), and the $(2R_3R_11R_12R)$ - and $(2S_3S_11S_12S)$ -tetraphenyl-18-crown-6 derivatives, (RRRR)-(3) and (SSSS)-(3).^a

Run	Crown ether (C.E.)	NH ₃ BH ₃ :C.E.	Ketone	Solvent	Time /h	% Yield ^ь	[α] _D /°	Optical yield ^c (%)	E.e. ^d (%)	Absolute configuration
1	(1)	1:1	PhCOMe	PhMe	16	80	0	0	0	_
2	(4)	2:1	PhCOMe	$PhMe-CH_2Cl_2(9:1)$	16	80	0	0	0	-
3	$(RRRR) \cdot (3)$	1:1	PhCOMe	PhMe	1	70	_	-	28	<i>(S)</i>
4	(RRRR)-(3)	2:1	PhCOMe	PhMe	16	70	_	-	26	(S)
5	(SSSS)-(3)	1:1	PhCOMe	$PhMe-CH_2Cl_2(3:2)$	16	70	_	-	20	(\hat{R})
6	(RRRR) - (3)	1:1	PhCOEt	PhMe	1.25	63	-12.7	28e	22	(S)
7	(SSSS)-(3)	1:1	PhCOPr ⁱ	PhMe	1.25	71	+33.9	71f	67	(\hat{R})
8	(SSSS) - (3)	1:1	PhCOBu ^t	PhMe	1.25	73	+17.8	59s	64	(R)
9	(SSSS) - (3)	2:1	PhCOBut	PhMe	1.25	70	-	-	62	(R)

^aConditions illustrated by reference to run 3. To a stirred solution of $(NH_3BH_3) \cdot (RRRR) \cdot (3)$ (0.35 mmol) in dry PhMe (10 ml) under N₂ at -78 °C were added PhCOMe (0.43 mmol) and distilled BF₃·Et₂O (0.35 mmol). The reaction mixture was stirred for 1 h, H₂O was added, and the organic products were isolated and chromatographed (SiO₂, CH₂Cl₂-n-pentane, 4:1, then MeOH) to separate PhCHOHMe from (*RRRR*)·(3). The alcohol was converted into the menthoxyacetate ester in the standard manner. The diastereoisomeric ratios were determined by ¹H n.m.r. spectroscopy after addition of Eu(hfbc)₃. ^bAll yields quoted refer to *isolated* yields. In the case of $(NH_3BH_3)_2$ ·(4) (0.5 mol. equiv.), the progress of reaction with PhCOMe (1.0 mol. equiv.) was monitored by g.l.c. After 75 min, conversion into PhCHOHMe was found to be quantitative. ^cThe optical yields were calculated from the optical rotations of the alcohols. ^dThe enantiomeric excesses (e.e.s) of the alcohols were deduced from the diastereoisomeric ratios of their menthoxyacetate esters estimated by ¹H n.m.r. spectroscopy (cf. footnote a). ^eBased on the reported (R. H. Pickard and J. Kenyon, J. Chem. Soc., 1914, 1115) value of $[\alpha]_D + 45.45^\circ$ (c 5.15, CHCl₃) for (R)-PhCHOHEt. Based on the reported (P. A. Levene and L. A. Mikeska, J. Biol. Chem., 1926, **70**, 355) value of $[\alpha]_D^{20} + 47.66^\circ$ (c 6.8, Et₂O) for (R)-PhCHOHPrⁱ. ^BBased on the reported (S. Winstein and B. K. Morse, J. Am. Chem. Soc., 1952, **74**, 1133) value of $[\alpha]_D^{20} + 30.6^\circ$ (c 3.64, Me₂CO) for (R)-PhCHOHBu^t.

hence not easily recycled. Here, we describe the first examples of chiral reagents where the reducing agent is bound noncovalently to the chiral auxiliaries.

Our observations9 that NH3BH3 forms crystalline 1:1 and 2:1 complexes, respectively, with 18-crown-6 (1) and its octamethyl derivative (2) led us to establish conditions (run 1 in Table 1) for the reduction of PhCOMe. Since the use of 18-crown-6 derivatives incorporating carbohydrate residues¹⁰ as chiral auxiliaries in the reduction of this prochiral ketone with NH₃BH₃ gave¹¹ disappointingly low e.e.s (ca. 10%), we decided to evaluate the tetraphenyl-18-crown-6 derivatives¹²⁻¹⁵ (*RRRR*)-(3) and (SSSS)-(3) as chiral auxiliaries. The indirect synthetic approach,¹² relying upon reaction of and Ts(OCH₂CH₂)₂OTs (\pm) -hydrobenzoin (Ts p-MeC₆H₄SO₂) in dioxane with NaOH as base gave a crude product which, on treatment¹⁶ with methanolic NH₃BH₃, afforded the 2:1 crystalline adduct $(NH_3BH_3)_2$ (4), m.p. 210-220 °C, with the trans-syn-trans configuration in 31% yield. Single crystals suitable for X-ray crystallographys were grown from CH₂Cl₂-n-pentane. An X-ray structural analysis (Figure 1) confirmed the existence of a 2:1 adduct in which the two equivalent NH3BH3 guest molecules approach oppo-

 \ddagger The free crown (4), m.p. 190–191 °C, M^{++} 568 (electron impact mass spectrum), $[M + NH_4]^+$ 586 (chemical ionisation with NH₃ as carrier gas), was obtained (89% yield) after treatment of (NH₃BH₃)₂ (4) with Me₂CO-CHCl₃ and column chromatography on SiO₂ (CHCl₃-MeOH, 9:1): ¹H n.m.r. data: δ(CDCl₃, 400 MHz) 3.59, 3.59, 3.75, and 3.90 (16H, 4 \times ABCD system, 4 \times OCH₂CH₂O), 4.52 (4H, s, 4 × PhCHO), and 6.90-7.16 (20H, m, 4 × Ph). Although t.l.c. and ¹H n.m.r. spectroscopy indicated that the crude reaction mixture contained (\pm) -(3) in addition to (4), these diastereoisomeric 18-crown-6 derivatives could only be separated efficiently by column chromatography on an analytical scale. Also, all attempts to obtain a crystalline adduct of (\pm) -(3) with NH₃BH₃ were unsuccessful. The free chiral crowns, (RRRR)-(3) and (SSSS)-(3) { $[M^{+} 568 \text{ (electron impact)}, [M + NH_4]^+ 586 \text{ (chemical ionisation}$ with NH₃ as carrier gas)}, obtained (cf. ref. 12) in 27 and 36% yields from (R)-(+)- and (S)-(-)-hydrobenzoins, respectively by stereospecific synthesis [Ts(OCH₂CH₂)₂OTs, NaOH, dioxane, 80 °C, 16 h] afforded identical ¹H n.m.r. spectra: δ(CDCl₃, 400 MHz) 3.60, 3.70, 3.77, and 3.86 (16H, 4 × ABCD system, 4 × OCH₂CH₂O), 4.55 (4H, s, $4 \times PhCHO$), and 6.90–7.15 (20H, m, $4 \times Ph$). This ¹H n.m.r. spectrum was identical with that obtained at 400 MHz for the analytical sample of (\pm) -(3) dissolved in CDCl₃.

§ *Crystal data:* for $(NH_3BH_3)_2$ ·(4), $C_{36}H_{52}B_2O_6N_2$, M = 630.4, triclinic, space group $P\overline{1}$, a = 7.270(1), b = 8.489(1), c = 16.023(3) Å, $\alpha = 78.80(1)$, $\beta = 82.20(1)$, $\gamma = 75.04(1)^\circ$, U = 933 Å³, Z = 1, $D_c = 1.12$ g cm⁻³. R = 0.042, $R_w = 0.058$ for 1812 independent observed reflections [$\theta \le 50^\circ$, $|F_o > 3\sigma(|F_o|)$]; preliminary results for (*RRRR*)-(3), $C_{36}H_{40}O_6$, M = 568.7, monoclinic, space group $P2_1$, a = 8.835(2), b = 23.419(5), c = 16.939(6) Å, $\beta = 96.51(2)^\circ$, Z = 4; structure determination is continuing; for (NH_3BH_3)·(*RRRR*)-(3), $C_{36}H_{46}BO_6N \cdot 0.25H_2O$, M = 604.0, orthorhombic, space group $P2_{1212}$, a = 8.166(2), b = 13.588(6), c = 32.420(8) Å, U = 3597 Å³, Z = 4, $D_c = 1.12$ g cm⁻³. R = 0.046, $R_w = 0.050$ for 2239 independent observed reflections [$\theta \le 58^\circ$, $|F_o| > 3\sigma(|F_o|)$].

In all cases, data were measured on a Nicolet R3m diffractometer with graphite-monochromated Cu- K_{α} radiation using the ω -scan routine. The structures of $(NH_3BH_3)_2(4)$ and $(NH_3BH_3)(RRRR)$ -(3) were solved by direct methods and the non-hydrogen atoms refined anisotropically. The NH₃ and BH₃ hydrogen atom positions were obtained from ΔF maps and the groups refined as rigid bodies. The atomic co-ordinates for $(NH_3BH_3)_2(4)$ and $(NH_3BH_3)(RRRR)$ -(3) are available from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation of this communication.

site faces of (4). Comparison with the published¹⁴ X-ray structure of uncomplexed (4), which adopts a conformation closely paralleling that of (1), shows that the formation of the centrosymmetric 2:1 NH₃BH₃ adduct with (4) causes the host molecule to revert to a conventional all-gauche conformation with pseudo D_{3d} symmetry for the ring ignoring the four equatorial phenyl substituents. Reduction of PhCOMe with 0.5 mol. equiv. of $(NH_3BH_3)_2$ ·(4) to give (RS)-PhCHOHMe in quantitative yield (footnote b relating to run 2 in Table 1) established that, in 2:1 adducts, both NH₃BH₃ guests can provide (cf. refs. 2 and 6) at least one hydride ion each. Our failure \ddagger to obtain a crystalline adduct of (\pm) -trans-anti-transtetraphenyl-18-crown-6 (\pm) -(3) with NH₃BH₃ from the above reaction persuaded us to resolve hydrobenzoin and convert^{12,13} the (R)-(+)- and (S)-(-)-isomers separately into (*RRRR*)-(**3**), m.p. 113—116 °C, $[\alpha]_{\rm D}$ +8.2°, $[\alpha]_{436}$ +25° (*c* 0.87, CHCl₃) and (*SSSS*)-(**3**), m.p. 110—111 °C, $[\alpha]_{\rm D}$ -7.6°, $[\alpha]_{436} - 24^{\circ}$ (c 0.74, CHCl₃). Recrystallisation of (RRRR)-(3) from CH₂Cl₂-n-pentane afforded single crystals suitable for X-ray analysis and the structure is currently being investigated. In contrast with the *trans-syn-trans* isomer (4), the chiral trans-anti-trans isomers, (RRRR)-(3) and (SSSS)-(3), formed 1:1 adducts with NH₃BH₃ in CH₂Cl₂-n-pentane: 150—155 °C, $(NH_3BH_3) \cdot (RRRR) - (3),$ m.p. and (NH₃BH₃) (SSSS)-(3), m.p. 152-157 °C were isolated† in 69 and 62% yields, respectively. Single crystals of the former were suitable for X-ray crystallography.§ The structural analysis (Figure 2) shows that, despite the 1:1 stoicheiometry of the adduct and the fact that two of the four phenyl substituents are axial, the macrocyclic ring still adopts an all-gauche conformation approximating to local pseudo D_{3d} symmetry, *i.e.* a stable chiral NH₃BH₃ adduct is formed. Runs 3—9 in Table 1 demonstrate that, even in solution, the chiral tetraphenyl-18-crown-6 derivatives (RRRR)-(3) and (SSSS)-(3) bind NH₃BH₃ and serve as chiral auxiliaries for enantioselective reductions of prochiral PhCOR ($R = Me, Et, Pr^{i}$, or Bu^t) substrates by NH₃BH₃. The following comments can be made and conclusions drawn.

(i) Compared with the only other previous report¹⁷ on asymmetric borohydride (NaBH₄) reduction of aromatic ketones in the presence of chiral 18-crown-6 derivatives (the highest e.e. observed was 8.1%) the enantioselectivities recorded in Table 1 are encouragingly high, given that the only substrate binding to the chiral NH₃BH₃ adduct is probably restricted to that associated with the reduction, *i.e.* the transfer of H⁻ ion from the BH₃ group in (NH₃BH₃)·(3) to the CO group in the PhCOR substrate.

(ii) The e.e.s obtained (compare runs 3 and 4, and 8 and 9) with 2:1 adducts are almost as high as those obtained with 1:1 adducts.

[†] All new adducts gave satisfactory analytical data.

Figure 1. The supramolecular structure of $(NH_3BH_3)_2$ ·(4). The torsional angles (°) around the macrocycle are shown beside the relevant bonds. The ring experiences four $[N-H \cdots O]$ contacts within hydrogen bonding distance: $R[N \cdots O]$, $R[H \cdots O](Å)$, angles (θ_N and θ_H°) between COC planes and (a) NO vectors and (b) HO vectors, $N-H \cdots O$ angles (°) at H atoms: $[N \cdots O(1)]$ 3.07, $[H_a \cdots O]$ 2.15, (a) 4.2, (b) 5.1, H_a 161; $[N \cdots O(4')]$ 3.06, $[H_c \cdots O]$ 2.11, (a) 9.2, (b) 7.7, H_c 173. Non-bonded $N \cdots O(7)$ distance, 3.55 Å. Distance of N from mean plane of six O atoms, 1.78 Å. The B-N bond is inclined by 24° to the normal to this plane.

Figure 2. The supramolecular structure of $(NH_3BH_3) \cdot (RRRR) \cdot (3)$. The torsional angles (°) around the macrocyclic ring are shown beside the relevant bonds. Hydrogen bond distances; $R[N \cdots O]$, $R[H \cdots O](Å)$, angles $(\theta_N \text{ and } \theta_H^\circ)$ between COC planes and (a) NO vectors and (b) HO vectors, N-H \cdots O angles (°) at H atoms: $[N \cdots O(1)]$ 3.07, $[H_a \cdots O]$ 2.12, (a) 15, (b) 11, H_a 168; $[N \cdots O(7)]$ 3.00, $[H_c \cdots O]$ 2.05, (a) 14, (b) 17, H_c 167; $[N \cdots O(13)]$ 2.94, $[H_b \cdots O]$ 1.98, (a) 20, (b) 18, H_b 172. Distance of N from mean plane of six O atoms, 1.24 Å. The B–N bond is inclined by 13° to the normal to this plane.

(iii) Solvent has a small influence on the observed e.e.s (compare runs 3 and 5); toluene is the preferred choice.

(iv) Without exception, the chiral auxiliaries (RRRR)-(3) and (SSSS)-(3) lead to (runs 3—9) the (S) and (R) alcohols, respectively.

(v) For the prochiral PhCOR substrates, much higher e.e.s are obtained when R is Pr^i or Bu^t (runs 7–9) than when R is Me or Et (runs 3–6).

We have been encouraged by these observations to synthesise other chiral 18-crown-6 derivatives (a) with bulkier aromatic substituents and (b) with aromatic substituents carrying functional groups for attachment to solid supports for catalytic purposes.¹²

We thank the S.E.R.C. and A.F.R.C. for support.

Received, 31st July 1984; Com. 1128

References

- 1 G. C. Andrews, Tetrahedron Lett., 1980, 21, 697.
- 2 G. C. Andrews and T. C. Crawford, *Tetrahedron Lett.*, 1980, 21, 693.
- 3 J. C. Fiaud and H. B. Kagan, Bull. Soc. Chim. Fr., 1969, 2742.
- 4 R. F. Borch and S. R. Levitan, J. Org. Chem., 1972, 37, 2347.
- 5 M. F. Grundon, D. G. McCleery, and J. W. Wilson, Tetrahedron
- Lett., 1976, 295; J. Chem. Soc., Perkin Trans. 1, 1981, 231. 6 W. M. Jones, J. Am. Chem. Soc., 1960, 82, 2528.
- 7 A. Hirao, S. Itsuno, S. Nakahama, and N. Yamazaki, J. Chem. Soc., Chem. Commun., 1981, 315; S. Itsuno, K. Ito, A. Hirao, and S. Nakahama, *ibid.*, 1983, 469.
- 8 H. Suda, S. Kanoh, N. Umeda, T. Kakajo, and M. Motoi, *Tetrahedron Lett.*, 1983, 24, 1513.

- 9 H. M. Colquhoun, G. Jones, J. M. Maud, J. F. Stoddart, and D. J. Williams, J. Chem. Sac., Dalton Trans., 1984, 63; B. L. Allwood, D. R. Alston, J. F. Stoddart, D. J. Williams, and J. B. Wolstenholme, Tetrahedron, in the press.
- 10 J. F. Stoddart. Chem. Rev., 1979, 8, 85.
- 11 B. L. Allwood, H. Shahriari-Zavareh, J. F. Stoddart, M. K. Williams, and D. J. Williams, in preparation for submission to *J. Incl. Phenom.*
- 12 A. Merz, M. Eichner, and R. Tomahogh, Liebigs Ann. Chem., 1981, 1774; F. Dietl, A. Merz, and R. Tomahogh, Tetrahedron Lett., 1982, 5255.
- 13 J. Yamashita, M. Minagawa, A. Sonobe, S. Ohashi, M. Kawamura, K. Shimizu, and H. Hashimoto, *Chem. Lett.*, 1982, 1409.
- 14 G. Weber, G. M. Sheldrick, Th. Burgemeister, F. Dietl, A. Mannschreck, and A. Merz, *Tetrahedron*, 1984, 40, 855.
- 15 E. Blasius, R. A. Rausch, G. D. Andreetti, and J. Rebizant, *Chem. Ber.*, 1984, **117**, 1113.
- 16 B. L. Allwood, S. E. Fuller, P. C. Y. K. Ning, A. M. Z. Slawin, J. F. Stoddart, and D. J. Williams, J. Chem. Soc., Chem. Commun., 1984, 1326.
- 17 Y. Shida, N. Ando, Y. Yamamoto, J. Oda, and Y. Inouye, Agric. Biol., Chem., 1979, 43, 1797; for an example of the catalysis of Michael addition reactions by chiral crown complexes, see D. J. Cram and G. D. Y. Sogah, J. Chem. Soc., Chem. Commun., 1981, 625.