1535

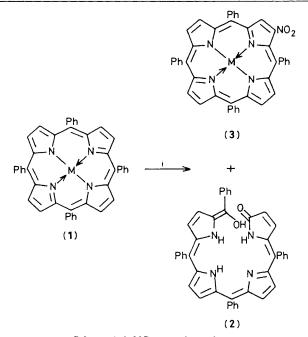
Control of Reactivity at the Porphyrin Periphery by Metal Ion Co-ordination: a General Method for Specific Nitration at the β -Pyrrolic Position of 5,10,15,20-Tetra-arylporphyrins

Maria M. Catalano, Maxwell J. Crossley,* Margaret M. Harding, and Lionel G. King Department of Organic Chemistry, The University of Sydney, N.S.W. 2006, Australia

The site of nitration by nitrogen dioxide on a range of metalloporphyrins has been found to be dependent on the co-ordinated metal; copper(II), nickel(II), and palladium(II) complexes are nitrated specifically on the porphyrin β -pyrrolic position while magnesium(II), zinc(II), chloroiron(III), and cobalt(II) complexes also give products which result from reaction at the *meso*-position.

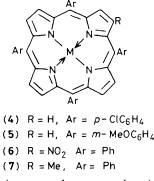
Reactions at the periphery of metalloporphyrins occur preferentially on the bridging *meso* positions and the few exceptions have been readily explained as arising from considerable steric impediment to such attack.¹ Calculations and a frontier orbital rationalization have been advanced to account for this selectivity.² We now report however that the preferred site of nitration of a range of 5,10,15,20-tetraarylporphyrins can be controlled by the simple process of varying the co-ordinated metal; this has allowed the development of a general method for specific nitration at a β -pyrrolic position of these porphyrins. This process is the result of electronic effects rather than overriding steric factors.

Treatment of a range of metallo-5,10,15,20-tetraphenylporphyrins (1) with nitrogen dioxide (2.05 equiv.) in trichloroethylene, CH_2Cl_2 , benzene, benzene-hexane, or CH_2Cl_2 -MeCN resulted in a rapid irreversible reaction at room temperature. Variation of the co-ordinated metal has a profound effect on the extent of β -nitration (Table 1), which was essentially the same in each solvent system.


The magnesium(II) and zinc(II) chelates gave mainly the bilinone (2)^{3,4} and other non-porphyrin products resulting from initial reaction at the *meso*-position (Scheme 1). This observation established that attack at the *meso*-position is not prevented by the aryl substituent. The extent of β -nitration increased with the electronegativity of the central metal and in the cases of the nickel(II), copper(II), and palladium(II) complexes regiospecific reaction at the β -pyrrolic position was observed to afford the corresponding 2-nitroporphyrin (3).†

[†] All new porphyrins have been adequately characterized by analytical and/or spectroscopic means.

Table 1. Effect of co-ordinated metal on the site of nitration	of
metallo-5,10,15,20-tetraphenylporphyrins. ^a	


Co-ordinated metal	% Nitration at β-pyrrolic position ^{b,c}	Pauling electronegativity
Mg ¹¹	24	1.31
Zn ¹¹	26	1.65
Fe ¹¹¹ Cl	53	1.83
Cou	80	1.88
Cu ^{II}	100	1.90
Ni ^{II}	100	1.91
Pd ¹¹	100	2.20

^a See text for reaction conditions. ^b Other products are ring-opened compounds arising from reaction at a *meso*-position. ^c Small amounts (<5%) of dinitrated compounds were also obtained.

Scheme 1. i, NO2 , protic work-up

The generality of the use of metal chelation to direct radical nitration to either the *meso* or the β -pyrrolic position in 5,10,15,20-tetra-arylporphyrins was shown by reactions on 5,10,15,20-tetra-*p*-chlorophenylporphyrin (4), 5,10,15,20tetra-*m*-methoxyphenylporphyrin (5), 2-nitro-5,10,15,20-tetraphenylporphyrin (6), and 2-methyl-5,10,15,20tetraphenylporphyrin (7) complexes. In each of these cases the copper(II) complex was cleanly and specifically nitrated on the β -pyrrolic positions to give (2-nitro-5,10,15,20-tetra-pchlorophenylporphyrinato)copper(II) (93% isolated yield), (2-nitro-5,10,15,20-tetra-m-methoxyphenyl porphyrinato)copper(II) (91%), an isomeric mixture of 2,7-, 2,8-, 2,12-, and 2,18-dinitro-5,10,15,20-tetraphenylporphyrin copper(II) complexes (38:19:23:20; 80% after demetallation), and an isomeric mixture of nitro-2-methyl-5,10,15,20tetraphenylporphyrin copper(II) complexes [3-, 7-, 8-, 12-, 13-, 17-, 18-substitution (7:18:5:20:7:24:19); 68% after demetallation]. The separation and structural assignment of these disubstituted compounds will be reported elsewhere. By comparison, nitration of zinc(11) complexes of (4) and (5) gave only low yields of the corresponding 2-nitrotetraarylporphyrins (9% and 14%, respectively), while nitration of the zinc(II) complex of (6) gave an isomeric mixture of dinitroporphyrins (18%); in each of these cases the major

products were ring-opened compounds arising from initial reaction at a *meso*-position, again showing that steric factors are small. These yields were unaltered when the reaction mixture was allowed to stand for extended periods before work-up, showing that the reaction is under kinetic control. The basis for the metal-ion dependent selectivity follows from the mechanism of the reaction; initial oxidation of the porphyrine by NO₂· to a porphyrin π -cation radical, followed by a radical combination with further NO₂· and proton loss.⁵

Metalloporphyrin π -cation radicals in which an electron has been removed from the highest-lying orbital have spin distribution of either a_{1u} or a_{2u} symmetry.⁶ Reaction of a radical with a metalloporphyrin π -cation radical of a_{1u} symmetry, electron spin density only on the α - and β -pyrrolic positions, would lead to specific β -substitution. These conditions have been overlooked in previous rationalizations of porphyrin reactivity,^{1,2} and are probably met in the case of Cu^{II}, Ni^{II}, and Pd^{II} complexes in the present study. The predominant *meso*-reactions of the Zn^{II} and Mg^{II} chelates are in accord with their π -cation radicals being of the a_{2u} type,⁶ with spin density mainly on the *meso*-positions and inner nitrogens with small density at the pyrrolic positions.

The route outlined in this communication provides a general method for efficient synthesis of 2-nitrotetraarylporphyrins and thereby allows convenient entry into several other classes of β -functionalised porphyrins by manipulation of the nitro group.^{7,8}

The effect of metal co-ordination on the reactions of several other porphyrin systems is under investigation.

We thank the Australian Research Grants Scheme for financial support.

Received, 23rd July 1984; Com. 1060

References

- 1 J.-H. Fuhrhop, 'Porphyrins and Metalloporphyrins,' ed. K. M. Smith, Elsevier, Amsterdam, 1975, p. 625; J.-H. Fuhrhop, 'The Porphyrins,' ed. D. Dolphin, vol. 2, Academic Press, New York, 1978, p. 131.
- 2 J.-H. Fuhrhop and J. Subramanian, *Philos. Trans. R. Soc. London*, *Ser. B*, 1976, **273**, 335.
- 3 H. J. Shine, A. G. Padilla, and S.-M.Wu, J. Org. Chem., 1979, 44, 4069.
- 4 B. Evans, K. M. Smith, and J. A. S. Cavaleiro, J. Chem. Soc., Perkin Trans. 1, 1978, 768.
- 5 E. C. Johnson and D. Dolphin, *Tetrahedron Lett.*, 1976, 2197; D. Dolphin, D. J. Halko, E. C. Johnson, and K. Rousseau, 'Porphyrin Chemistry Advances,' ed. F. R. Longo, Ann Arbor Science, Ann Arbor, 1979, p. 119.
- 6 J. Fajar and M. S. Davis, 'The Porphyrins,' ed. D. Dolphin, vol. 4, Academic Press, New York, 1979, p. 197.
- 7 J. E. Baldwin, M. J. Crossley, and J. F. DeBernardis, *Tetrahedron*, 1982, **38**, 685.
- 8 M. J. Crossley and L. G. King, J. Chem. Soc., Chem. Commun., 1984, 920; M. M. Catalano, M. J. Crossley, and L. G. King, *ibid.*, following communication.