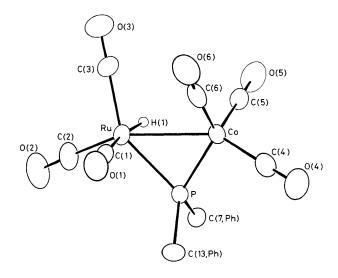
Reactivity of Phosphido-bridged Heterobinuclear Complexes: Site-selective Carbonyl Substitution by a Hydride. Synthesis and Structural Characterisation of $NEt_4[H(CO)_3Ru(\mu-PPh_2)Co(CO)_3]$

Salaheddine Guesmi, Georg Süss-Fink, J. Pierre H. Dixneuf, Nicholas J. Taylor, and Arthur J. Cartyc*

- ^a Laboratoire de Chimie de Coordination Organique, E.R.A., C.N.R.S. 477, Université de Rennes, Campus de Beaulieu, F-35042 Rennes-Cédex, France
- ^b Laboratorium für Anorganische Chemie, Universität Bayreuth, Universitätstrasse 30, D-8580 Bayreuth, Federal Republic of Germany
- ^c Guelph-Waterloo Centre, Waterloo Campus, Department of Chemistry, University of Waterloo, Ontario N2L 3G1, Canada

The phosphido-bridged heterobinuclear compound (CO)₄Ru(μ -PPh₂)Co(CO)₃ (1) on treatment with NaBH₄ affords, *via* site-selective CO displacement on the ruthenium atom, the anion [H(CO)₃Ru(μ -PPh₂)Co(CO)₃]⁻ which contains a terminal hydride *cis* to a μ -PPh₂ group: the structure of the anion has been established by an *X*-ray diffraction study of the Et₄N+ salt.

Several reactions of considerable interest such as C–C bond formation and ketone synthesis have been accomplished with transition-metal complexes containing bridging phosphido ligands. Recent reports on unusual transformations of bi- and poly-nuclear μ -PR₂ complexes have focused much attention on the reactivity of these compounds. It has been


established that while a μ -PPh₂ group may assist in maintaining the structural integrity of a metal framework the phosphido bridge itself may behave as a reactive site in the molecule.^{3,4} In particular, several examples of the conversion of a μ -PPh₂ group into a terminal PPh₂H ligand by hydridic reducing agents have been described.^{3a.c.d} By contrast, we

observed a significantly different type of behaviour for $(CO)_4Ru(\mu\text{-PPh}_2)Co(CO)_3$ (1) towards sodium borohydride which leads to the formation of the anion $[H(CO)_3Ru(\mu\text{-PPh}_2)Co(CO)_3]^-$ via a site-selective carbonyl substitution by a hydride. In the complex $Et_4N[H(CO)_3Ru(\mu\text{-PPh}_2)Co(CO)_3]$ (2), which is the first example of a binuclear ruthenium–cobalt compound containing a terminal hydride, the hydride ligand is co-ordinated to the ruthenium cis to a $\mu\text{-PPh}_2$ group. In view of the reactivity and the catalytic potential of other hydrido ruthenium carbonyl anions⁵ an abundant chemistry may be expected for (2).

$$(CO)_4$$
Ru(μ -PPh₂)Co(CO)₃
(1)

$$Et_4N[H(CO)_3Ru(\mu\text{-PPh}_2)Co(CO)_3]$$
(2)

Treatment of a suspension of (CO)₄Ru(μ-PPh₂)Co(CO)₃ (1) (1 mmol), obtained⁶ via the reaction of (p-cymene)-RuCl₂(PPh₂H) with Co₂(CO)₈, in tetrahydrofuran (THF) (70 ml) with an excess of NaBH₄ for 2 h, removal of solvent, and dissolution of the residue in a solution of $[Et_4N]Cl$ (1.5 mmol) in methanol (70 ml) afforded an orange solution from which (2) (53%, m.p. 80–82°C) crystallised. I.r. data [ν (CO) in THF, 2048m, 1983m, 1963m, 1942w, and 1903m, cm⁻¹] showed only terminal carbonyl absorptions. ³¹P {¹H} N.m.r. results [(CD₂Cl₂; 213 K; 32.38 MHz) δ 186.5 (s)] indicated retention of the phosphido bridge across a strong Ru-Co bond⁶ and ¹H n.m.r. data [(CD₂Cl₂; 303 K) δ 7.4 (m, 2 Ph); and -9.25 (d, Ru–H, ${}^2J_{\text{H-}\mu\text{-P}}$ 22.3 Hz)] suggested the presence of a single hydride on the ruthenium atom since no broadening of the hydride resonance due to the ⁵⁹Co quadrupole was evident. The ¹³C{¹H} and ¹H coupled n.m.r. spectra were informative: [13C {1H} (CD₂Cl₂; 300 K; 20.45 MHz) δ 215.1 {d, Co(CO)₃, ²J_{P-C} 6.8 Hz} 207.3 (d, Ru-CO_{eq-trans}, ²J_{P-C} 46.2 Hz), 203.1 (s, Ru- $CO_{eq\text{-}cis}$), and 198.3 (d, Ru- $CO_{ax\text{-}cis}$, $^2J_{P\text{-}C}$ 7.7 Hz); 13 C (1 H coupled) δ 215.1 (d), 207.3 (dd, $^2J_{C\text{-H}}$ 6.8 Hz), 203.1 (d, ${}^{2}J_{C-H}$ 6.0 Hz), and 198.3 (dd, ${}^{2}J_{C-H}$ 27.8 Hz); the equatorial plane is defined by the Ru, P, Co atoms, and the cis- or trans-positions of the carbonyls refer to the PPh2 group^{6b}]. The stereochemistry of the ruthenium atom with an axial hydride, cis to the Ru-Co bond and the μ -PPh₂ group and trans to the axial carbonyl, was indicated by the large $^2J_{\text{H-C(CO},ax-cis)}$ value and non-equivalence of the phenyl groups. This result was confirmed by a single-crystal X-ray structure determination.† An ORTEP plot of the structure of the anion is shown in Figure 1. The heterobinuclear molecule consists of Co(CO)₃ and HRu(CO)₃ moieties held together by

Figure 1. A perspective view of the molecular structure of $Et_4N[H(CO)_3Ru(\mu-PPh_2)Co(CO)_3]$ showing the atomic numbering. Important distances not mentioned in the text are: Ru–P 2.307(2), Co–P 2.157(3), Co–C(4) 1.761(10), Co–C(5) 1.795(9), Co–C(6) 1.724(9), Ru–H 1.58 Å.

an Ru-Co bond of length 2.737(1) Å, slightly shorter than that in $(PPh_3)(CO)_3Ru(\mu-PPh_2)Co(CO)_3$ [2.7681(4) Å],7 and a phosphido bridge | Ru-P-Co 75.6(1)°]. The stereochemistry at the ruthenium atom is approximately octahedral with the phosphorus atom of the μ-PPh₂ group, the Ru-Co vector, and two carbonyl groups C(2)–O(2) and C(3)–O(3) defining a distorted plane and with C(1)-O(1) and the hydride H(1)perpendicular to this plane and trans to one another [H(1)]Ru-C(1) 167°]. Thus with respect to the Ru-Co and Ru-P bonds, H(1) is axial and cis. The terminal hydride exerts a trans bond lengthening influence on the carbonyl C(1) with Ru-C(1) [1.957(8) Å] significantly longer than Ru-C(2) [1.848(10) Å] and Ru–C(3) [1.920(9) Å], the latter being trans to the μ-PPh₂ group. There is an interesting comparison with the phosphine derivative (PPh₃)(CO)₃Ru(μ-PPh₂)Co(CO)₃⁷ where the PPh₃ ligand occupies an equatorial site trans to the Ru-Co bond.

Several observations relating to the substitution of CO in (1) by H⁻ to give (2) can be made. First, the substitution is metal-specific, there being no evidence for a cobalt substitution product. This provides the first evidence for binuclear (Ru-Co) systems⁸ that the known efficacy of ruthenium compounds as hydrogenation catalysts translates into a high affinity for hydride in heterobimetallic species. It is also notable that the small hydride ligand, with a high transinfluence, occupies a site other than trans to the Ru-Co and Ru-PPh₂ bonds where significant destabilisation of the heterobinuclear molecule by Ru-Co or Ru-P bond lengthening might occur. Finally it is significant that the isolation of (2) with cis-hydride and μ-PPh₂ groups on the ruthenium atom, at ambient temperatures provides both an indication of a possible mechanism for bridge cleavage via PPh₂H elimination and also evidence that hydride attack on heterobinuclear complexes may proceed without fragmentation. These observations have obvious relevance to the development of significant chemistry for heterometallic phosphido bridged compounds, a problem which we are currently exploring.

We are grateful to the C.N.R.S. (P.H.D.) and N.S.E.R.C.

[†] Crystal data: monoclinic, space group Cc, a=8.185(1), b=22.621(3), c=15.865(2) Å, $\beta=98.67(1)^\circ$, U=2903.9(7) Å³, Z=4, $D_c=1.474$ g cm⁻³, F(000)=1312 electrons, $\mu(\text{Mo-}K_{\alpha})=11.96$ cm⁻¹. A total of 2572 reflections were measured to $2\theta=50^\circ$ on a Syntex P2₁ diffractometer. The structure was solved and refined to R and R_w values of 0.035 and 0.043 respectively using 2302 [$I \ge 3\sigma(I)$] observed data. The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

(A.J.C.) for financial support of this work, and to the D.F.G. for an advanced research fellowship (G.S.F.).

Received, 6th August 1984; Com. 1148

References

- D. Nucciarone, N. J. Taylor, and A. J. Carty, *Organometallics*, 1984, 3, 177; G. N. Mott, R. Granby, S. A. Maclaughlin, N. J. Taylor, and A. J. Carty, *ibid.*, 1983, 2, 189; S. A. MacLaughlin, J. P. Johnson, N. J. Taylor, and A. J. Carty, *ibid.*, 1983, 2, 352.
- 2 J. P. Collman, R. K. Rothrock, R. G. Finke, and F. Rose-Munch, J. Am. Chem. Soc., 1977, 99, 7381; J. P. Collman, R. K. Rothrock, R. G. Finke, E. J. Moore, and F. Rose-Munch, Inorg. Chem., 1982, 21, 146.
- 3 (a) Y. F. Yu, J. Gallucci, and A. Wojcicki, J. Chem. Soc., Chem. Commun., 1984, 653; (b) K. Hendrick, J. A. Iggo, M. J. Mays, and P. R. Raithby, ibid., 1984, 209; (c) G. J. Geoffroy, S. Rosenberg, P. M. Shulman, and R. R. Whittle, J. Am. Chem. Soc., 1984, 106,

- 1519; (d) J. S. McKennis and E. V. Kyba, *Organometallics*, 1983, **2**, 1249; (e) S. A. MacLaughlin, A. J. Carty, and N. J. Taylor, *Can. J. Chem.*, 1982, **60**, 87.
- 4 R. Regragui, P. H. Dixneuf, N. J. Taylor, and A. J. Carty, Organometallics, 1984, 3, 814; W. F. Smith, N. J. Taylor, and A. J. Carty, J. Chem. Soc., Chem. Commun., 1976, 896; K. F. Yasufuku and H. Yamazaki, J. Organomet. Chem., 1972, 35, 367.
- 5 G. Suss-Fink and J. Reiner, J. Mol. Catal., 1982, 16, 231; G. Suss-Fink, G. Hermann, and U. Thewalt, Angew. Chem., Int. Ed. Engl., 1983, 22, 880; B. F. G. Johnson, J. Lewis, P. R. Raithby, and G. Suss-Fink, J. Chem. Soc., Dalton Trans., 1979, 1354; A. A. Bhattacharyya, C. C. Nagel, and S. G. Shore, Organometallics, 1983, 2, 1187.
- 6 (a) R. Regragui and P. H. Dixneuf, J. Organomet. Chem., 1982, 239, C12; (b) R. Regragui, P. H. Dixneuf, N. J. Taylor, and A. J. Carty, Organometallics, 1984, 3, 1020.
- 7 R. Regragui, P. H. Dixneuf, N. J. Taylor, and A. J. Carty, Organometallics, 1984, submitted for publication.
- 8 E. Roland and H. Vahrenkamp, Organometallics, 1983, 2, 183.