Occurrence of Triterpenoids in Methanol-oxidizing Bacteria. 2-Methyl-22hydroxyhopane from *Corynebacterium*

André Babadjamian,** Robert Faure,* Michèle Laget,^b Gerard Dumenil,^b and Prudent Padieu^c

^a Institut de Pétroléochimie et de Synthèse Organique Industrielle, L.A. 126 du C.N.R.S., Rue H. Poincaré, F-13397 Marseille Cedex 13, France

^b Laboratoire de Microbiologie, Faculté de Pharmacie, 27 Bd. J. Moulin, F-13385 Marseille Cedex 5, France ° Laboratoire de Biochimie Médicale, Faculté de Médécine, 7, Bd. Jeanne d'Arc, F-21033 Dijon, France

A novel pentacyclic triterpenoid was isolated from a *Corynebacterium sp.* and identified by ¹³C n.m.r. spectroscopy as 2-methyl-22-hydroxyhopane.

Isoprenoid compounds are widely distributed and some of them play important roles in the cells of living organisms.¹ However, little is known about isoprenoids in methanoloxidizing bacteria. We now report the isolation and structure determination of a novel C_{31} pentacyclic triterpenoid from a prokaryotic organism.

The bacterium was a facultative methylotrophic strain *Corynebacterium* sp. XG, grown in a fermentor with FB2 medium containing 2% methanol (v/v).² The cells were extracted with methanol and the extract was saponified with 3% aqueous potassium hydroxide. The unsaponified fraction was obtained by extraction with light petroleum. Separation and purification were performed by preparative h.p.l.c. using a Lichroprep RP8 column. The major component, $C_{31}H_{54}O$, was isolated with light petroleum–acetone (97:3) as eluant

(0.17% of cell dry weight): M^+ , m/z 442, m.p. 184–186 °C, $[\alpha]_D^{29} + 0.64^\circ$.

I.r., ¹H and ¹³C n.m.r., and mass spectrometry indicated that the compound was 2-methyl-22-hydroxyhopane (2-methyldiplopterol). The mass spectrum is very similar to spectra of most hopanoid compounds^{3,4} and its 250 MHz ¹H n.m.r. spectrum is consistent with a 22-hydroxyhopane structure:^{5,6} δ 0.78 (s, 3H), 0.85 (s, 3H), 0.89 (s, 3H), 0.90 (s, 3H), and 0.96 (s, 6H). We conclude that C₃₁H₅₄O is a methyl homologue of hopan-22-ol.

The position of the methyl group was determined by ¹³C n.m.r. spectroscopy, using a Bruker AM 200 spectrometer operating at 200 MHz in the Fourier-transform mode using a DEPT sequence.⁷ The substitution profile of the carbon centres was determined; shift assignments (Table 1) relied on

Table 1. ¹³ C N.m.r. data	1
---	---

Carbon	(1)	Hopan-22-ol
C-1	45.4	40.2
C-2	24.6	18.6
Č-3	49.9	42
C-4	32.5	33
C-5	51.3ª	56
C-6	20.0 ^b	18.6
C-7	32.7	32.9
C-8	42.1°	41.6
C-9	50.5	50.4
C-10	38.0	37.2
C-11	22.1 ^b	20.8
C-12	24.6	23.8
C-13	49.0	49.5
C-14	42.2°	41.8
C-15	34.6	34.2
C-16	22.1	21.7
C-17	54.2	53.8
C-18	44.3	43.9
C-19	41.5	43.4
C-20	26.6	26.5
C-21	51.1ª	50.9
C-22	73.9	73.5
C-23	31.1ª	33.2
C-24	21.8	21.4
C-25	17	15.6
C-26	16.3	16.4
C-27	16.3	16.5
C-28	23.2	22.7
C-29	29.0	28.7
C-30	30.9 ^d	30.8
C-31	26.1	

† δ Values in p.p.m. downfield from SiMe₄. Values bearing the same superscript may be interchanged. Shifts for hopan-22-ol are inferred from data in ref. 8.

analogy with data for triterpenoids related to hopane8 and additivity parameters for the prediction of ¹³C chemical shifts in trans-decalin systems (Table 2).9

Table 2. Incremental calculation of the shifts for C-1, C-2, and C-3, with axial and equatorial orientations of the 2-methyl group.

Carbon $(eq.)$	δ(expt.)	δ (calc.) 46.5
C-1 $\left\{ \begin{array}{c} C-1 \\ Me(ax.) \end{array} \right\}$	45.4	43.5
$\int de^{Me(eq.)}$	24.6	25.7
$C-2 \left\{ Me(ax.) \right\}$	24.6	29.1
C-3 $\left\{ \frac{\operatorname{Me}(eq.)}{\operatorname{Me}(ax.)} \right\}$ 49.9	40.0	50.9
	49.9	48.0

The data in Table 1 show large shifts for the carbon atoms originally at δ ca. 42 in hopan-22-ol, which may be explained by the deshielding effect of the additional methyl group. On this basis the only position for this group is the 2-position of the hopane skeleton. This hypothesis was confirmed by calculation of C-1, C-2, and C-3 shifts by Beierbeck's method9 (Table 2).

We conclude that the compound isolated is 2-methyl-22hydroxyhopane (1) with the methyl group probably in the equatorial conformation. This type of methylated hopan-22-ol was first isolated by Natori et al.¹⁰ from Pseudomonas without a precise determination of the position of the methyl group.

This work presents, to the best of our knowledge, the first example of a product biogenetically derived from squalene substituted in the 2-position. Some isolated hopanoid derivatives may have the same methyl position.¹¹

Received, 16th July 1984; Com. 1022

References

- 1 G. Ourisson, P. Albrecht, and M. Rohmer, Pure Appl. Chem., 1979, 51, 709.
- 2 G. Dumenil, M. Andriantsoa, M. Laget, and A. Crémieux, Biotechnol. Lett., 1983, 5, 813.
- 3 J. Schmidt and S. Huneck, Org. Mass Spectrom., 1979, 14, 656.
- 4 H. W. Lynn, Diss. Abstr. Int. B, 1980, 41, 1205.
- 5 R. E. Corbett and H. Young, J. Chem. Soc. C, 1966, 1556. 6 R. E. Corbett and H. Young, J. Chem. Soc. C, 1966, 1564.
- 7 M. R. Bendall, D. M. Doddrell, and D. T. Pegg, J. Magn. Reson., 1981, 44, 238.
- 8 E. Wenkert, G. V. Baddeley, I. R. Burfitt, and L. N. Moreno, Org. Magn. Reson., 1978, 11, 337.
- 9 H. Beierbeck and J. K. Saunders, Can. J. Chem., 1975, 53, 1307.
- 10 Y. Natori, T. Kamei, and T. Nagasaki, Agric. Biol. Chem., 1981, 45, 2337.
- 11 M. Rohmer, P. Bouvier-Nane, and G. Ourisson, J. Gen. Microbiol., 1984, 130, 1137.