1669

Synthesis, Structure, and Reactivity of a μ -Bis(dialkylphosphido)-dilithium [Li(μ -PR₂)]₂ [R = CH(SiMe₃)₂][†]

Peter B. Hitchcock, Michael F. Lappert,* Philip P. Power, and Stephen J. Smith

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Reaction of lithium shot with PCIR₂ [R = CH(SiMe₃)₂] in OEt₂ at 25 °C affords the title phosphide [Li(μ -PR₂)]₂, (1), which in C₆D₆ shows a triplet ⁷Li n.m.r. signal, and reacts as (a) a Lewis acid to afford the monomeric Li(PR₂)(NMe₂[CH₂]₂NMe₂), (2), (which in C₆D₆ shows a doublet ⁷Li n.m.r. signal), (b) a PR₂ transfer agent to yield PR₂X (X = H or Me) with XCl, or (c) a reducing agent to furnish PR₂ with Bu^tCl or SnCl₂; compound (1) has a planar Li₂P₂ ring with average Li–P and P–C distances of 2.473(10) and 1.892(7) Å, and mean LiPLi, PLiP, and CPC angles of 72.2(3), 107.8(3), and 102.0(5)°.

Organic lithium compounds $(\text{LiX})_{x}$, in which X⁻ is a monodentate carbon-,¹ nitrogen-,² or oxygen-³ centred ligand, display a wide variety of structures and reactivity. They are of considerable theoretical significance⁴ and also of practical value as key X⁻ transfer agents, for example to transitionmetal (M) sites to yield compounds of type [M(X)_mL_n].

Phosphidolithium compounds Li(PR₂), L_y (L is a neutral ligand) have received little attention. Only two compounds, [Li(PBu¹₂)(thf)₄]₄ (thf = tetrahydrofuran)⁵ and [Li(12-crown-4)₂][PPh₂],⁶ are fully (X-ray) structurally characterised. Another, Li(PPh₂)(OEt₂)_n, was assigned a dimeric (μ -PPh₂)₂ structure in OEt₂ at 200 K, on the basis of the 1:2:1 triplet ⁷Li n.m.r. signal, $J(^{7}\text{Li}-^{31}\text{P})$ 45 Hz;⁷ and LiPPh₂ in thf was believed to be a tetramer from T_{1} -¹³C n.m.r. data.⁸ There is much current activity in transition-metal phosphido com-

plexes, using ligands such as $\overline{P}Bu_{2}^{i_{2}}$ and $\overline{P}R_{2}$ [R = CH(SiMe_{3})_{2}];⁹ the latter has been accessible either through the stable P^{II} compound $\overline{P}R_{2}^{10}$ or its dimer and thence NaPR₂.⁹

We now report on (a) the synthesis (i in Scheme 1) of the first isolated uncomplexed phosphidolithium, $[\text{Li}(\mu-\text{PR}_2)]_2$, (1); (b) X-ray data for (1), which reveal that it is the first among crystalline $(\text{LiX})_x$ compounds to have the $[\text{Li}(\mu-\text{X})]_2$ structure [although for X = N(SiMe_3)_2, there is a precedent, in the gaseous amide²]; (c) the powerful reducing properties of (1) (ii and iii, Scheme 1), which are unprecedented in $(\text{LiX})_x$ chemistry;¹⁻³ and (d) other reactions of (1) in which, by contrast, it behaves as either a $\overline{\text{PR}}_2$ transfer agent (iv and v, Scheme 1) or a Lewis acid (vi, Scheme 1).

The Li_2P_2 ring in (1) is essentially planar, with average Li–P and P–C distances of 2.473(10) and 1.892(7) Å and an average CPC angle of 102.0(5)°. In [Li(12-crown-4)₂][PPh₂], the mean

^{*} No reprints available.

Scheme 1. R = CH(SiMe₃)₂; each of i—vi was carried out in OEt₂ at *ca.* 25 °C. *Characterisation:* (a) ³¹P n.m.r. chemical shifts (p.p.m., rel. to 85% H₃PO₄): (1) –254 (septet), $J(7Li-^{31}P)$ 80 Hz; (2) –115.5 (q), $J(7Li-^{31}P)$ 122 Hz; (3) –19.4 (br. q); (b) 7Li n.m.r. chemical shifts (p.p.m., rel. to aq. LiNO₃): (1) 2.1 (t), $J(7Li-^{31}P)$ 80 Hz; (2) 1.04 (d), $J(7Li-^{31}P)$ 122 Hz; (c) satisfactory microanalytical and spectroscopic [i.r., mass, and ¹H and ¹³C n.m.r.] data for compounds (1)—(3): and (d) X-ray diffraction for compound (1) (see Figure 1).

Figure 1. The molecular structure and atom numbering scheme for μ -bis[bis{bis(trimethylsilyl)methyl}phosphido]dilithium, (1). Some relevant dimensions are: P(1)–C(1) 1.888(7), P(1)–C(2) 1.894(5), P(2)–C(3) 1.898(5), P(2)–C(4) 1.887(7), P(1)–Li(1) 2.481(10), P(1)–Li(2) 2.473(9), P(2)–Li(1) 2.456(9), and P(2)–Li(2) 2.481(10) Å; P(1)–Li(1)–P(2) 108.1(3), P(1)–Li(2)–P(2) 107.5(3), Li(1)–P(1)–Li(2) 72.0(3), and Li(1)–P(2)–Li(2) 72.4(3)°.

P–C bond length is 1.808(4) Å and the mean CPC angle is $105.2(2)^{\circ.6}$ In $[Li_2(\mu_3-PBu^t_2)(\mu_2-PBu^t_2)(thf)]_2$, for the doubly bridging phosphorus atoms the mean Li–P distances are 2.488(10) Å and the PLiP angle is $107.7(3)^{\circ.5}$ [cf., $107.8(3)^{\circ}$ in (1)].

X-Ray quality crystals of $[Li(\mu-PR_2)]_2$, (1), were grown from $n-C_5H_{12}$ at -30 °C.

Crystal data for (1): C₂₈H₇₆Li₂P₂Si₈, triclinic, space group $P\overline{1}$, a = 12.907(2), b = 13.137(1), c = 15.934(6) Å, $\alpha = 74.33(2)$, $\beta = 87.11(2)$, $\gamma = 62.35(2)^{\circ}$, U = 2295.4 Å³, Z = 2, $D_c = 1.03$ g cm⁻³.

The structure of (1) (Figure 1) was solved by direct methods and refined to R = 0.059, R' = 0.075, \ddagger using 4131 reflections $[I > \sigma(I)]$ measured on a CAD-4 diffractometer with Mo- K_{α} radiation.

The dichotomy [*cf.*, (ii) and (v) in Scheme 1] in reactivity of $[\text{Li}(\mu-\text{PR}_2)]_2$, (1), suggests that the initial step in much of its chemistry is electron-transfer; and the subsequent fate of the radical pair depends primarily on steric effects, as illustrated in Scheme 2. The strong reducing properties of (1) are also indicated by the low first ionisation potential of *ca.* 7.5 eV [from He I spectroscopy; (1) is a dimer in the vapour, by mass spectrometry], *cf.*, 8.5 eV for $[\text{Li}(\mu-\text{NR}''_2)]_2$ ($\mathbb{R}'' = \text{SiMe}_3$).¹¹

The importance of steric effects is further demonstrated by the observation that while PClR₂ and LiX readily yield PR₂X if X is not excessively bulky (*e.g.*, $X = Me \text{ or } NMe_2$), there was no reaction (under reflux in n-C₆H₁₄ or OEt₂) for $X = NPr_{i_2}$, N(SiMe₃)₂, or R, or between PClR₂ and Mg(Br)Bu^L-OEt₂.

We thank S.E.R.C. (studentship to S. J. S. and diffractometer), the Royal Society (dry-box) for support, and Dr. R. J. Suffolk for the photoelectron spectra.

Received, 10th August 1984; Com. 1166

References

- 1 J. L. Atwood, T. Fjeldberg, M. F. Lappert, N. T. Luong-Thi, R. Shakir, and A. J. Thorne, *J. Chem. Soc.*, *Chem. Commun.*, 1984, 1163, and references therein.
- 2 T. Fjeldberg, P. B. Hitchcock, M. F. Lappert, and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1984, 822, and references therein.
- B. Cetinkaya, I. Gümrükçü, M. F. Lappert, J. L. Atwood, and R. Shakir, J. Am. Chem. Soc., 1980, 102, 2086; J. Hvoslef, H. Hope, B. D. Murray, and P. P. Power, J. Chem. Soc., Chem. Commun., 1983, 1438; and references therein.
- 4 P. v. R. Schleyer, *Pure Appl. Chem.*, 1983, **55**, 355; 1984, **56**, 151; and references therein.
- 5 R. A. Jones, A. L. Stuart, and T. C. Wright, J. Am. Chem. Soc., 1983, 105, 7459.
- 6 H. Hope, M. M. Olmstead, P. P. Power, and X. Xu, J. Am. Chem. Soc., 1984, 106, 819.
- 7 I. J. Colquhoun, H. C. E. McFarlane, and W. McFarlane, J. Chem. Soc., Chem. Commun., 1982, 220.
- 8 A. Zschunke, E. Bauer, H. Schmidt, and K. Issleib, Z. Anorg. Allg. Chem., 1982, 495, 115.
- 9 A. H. Cowley, R. A. Jones, C. A. Stewart, A. L. Stuart, J. L. Atwood, W. E. Hunter, and H.-M. Zhang, J. Am. Chem. Soc., 1983, 105, 3737.
- 10 M. J. S. Gynane, A. Hudson, M. F. Lappert, P. P. Power, and H. Goldwhite, J. Chem. Soc., Dalton Trans., 1980, 2428.
- 11 J. C. Greene, M. Payne, E. A. Seddon, and R. A. Andersen, J. Chem. Soc., Dalton Trans., 1982, 887.
- 12 A. H. Cowley and R. A. Kemp, Inorg. Chem., 1983, 22, 547.

[‡] The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW. Any request should be accompanied by the full literature citation for this communication.