Experimental and Theoretical Evidence for the Existence of a Stable Ketene Dication in the Gas Phase

Wolfram Koch,^a Francis Maquin,^b Daniel Stahl,^{*b} and Helmut Schwarz^{*a}

^a Institut für Organische Chemie der Technischen Universität Berlin, 1000 Berlin 12, West Germany ^b Institut de Chimie Physique, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland

The ketene dication, $CH_2=C=O^{2+}$ (1), is accessible by charge stripping from $C_2H_2O^{+\cdot}$ with $Q_{min} = 18.6 \pm 0.1 \text{ eV}$ for $C_2H_2O^{+\cdot} \rightarrow C_2H_2O^{2+}$ which is in excellent agreement with the vertical ionization energy of 18.56 eV predicted by *ab initio* molecular orbital calculations (MP2/6-31G*//4-31G); from isodesmic substitution a heat of formation of 651 kcal mol⁻¹ is estimated for (1) which is also predicted by the *ab initio* calculations to correspond to the global minimum on the $C_2H_2O^{2+}$ potential energy surface followed by the oxirene dication (2) having $\Delta H_f^{\circ} = 678$ kcal mol⁻¹ (1 kcal = 4.184 kJ).

As Schleyer has pointed out¹ carbodications are an emerging class of unusual molecules. Many stable carbodications are already known in solution,² and in the gas phase chargestripping (C.S.) mass spectrometry³ has led recently to the generation of a great number of stable dications, including small molecules whose coulombic repulsion is expected to be quite substantial.⁴ High level *ab initio* calculations in conjunction with C.S. studies have provided a detailed insight into many features of these unusual species.^{4,5}

We report here our experimental and theoretical studies on the $C_2H_2O^{2+}$ system, which in contrast to the wellunderstood⁶ potential energy surface of neutral C_2H_2O has not been explored so far. The Q_{min} value, *i.e.* the energy to remove one electron from ionized ketene, which itself has been generated by electron impact ionization (70 eV) of either ketene (obtained by thermolysis of diketene in the inlet system) or *via* unimolecular H₂O loss from the molecular ion of acetic acid, has been determined in a C.S. experiment by employing a VG Analytical ZAB-2F mass spectrometer and using the technique described previously.^{4,5} A value Q_{min} 18.6 \pm 0.1 eV has been obtained which is in excellent agreement with the vertical ionization energy (I.E._v) of 18.56 eV predicted by high level *ab initio* molecular orbital calculations performed at the MP2/6-31G*//4-31G level.

A thorough analysis of the ground state potential energy surface of $C_2H_2O^{2+}$ ions revealed that among the ten minima located, † species (1) and (2) are the most stable ones, with the dication of ketene representing the global minimum. Doubly ionized oxirene (2) is predicted to be 26.8 kcal mol⁻¹‡ less stable than (1) at the highest level used (Table 1). For the neutral system⁶ at the best level of theory an energy difference between (2) and (1) of *ca*. 80 kcal mol⁻¹ was obtained, which emphasized the relative destablizing effect of the 4π electron

⁺ Structural details as well as *ab initio* energies of all stable isomers studied are available upon request from the authors and in addition to (1) and (2) the following species were found to be minima (numbers given in parentheses are the energies [in kcal mol⁻¹ (1 kcal = 4.184 kJ), relative to $E_1 = 0$ kcal mol⁻¹]; C–O–CH₂²⁺ (42.6), CH–C–OH²⁺ (58.5), C–C(H)–OH²⁺ (88.4), CH–O–CH²⁺ (91.0), CH–C(H)–O²⁺ (116.7), C–C–OH₂²⁺ (171.9), C–C–OH₂²⁺ (188.5), and CH–O(H)–C²⁺ (234.4). The dication of oxiranylidene was, in contrast to its neutral counterpart, not found to exist in a minimum; upon

 $\ddagger 1$ kcal = 4.184 kJ.

geometry optimization it 'rearranges' to (1).

configurations of oxirene.⁷ The removal of two electrons from the oxirene dication increases the stability of this unfavoured configuration. Removal of two electrons from the neutral analogue of either (1) or (2) is also associated with remarkable structural changes; the most notable ones are the lengthening of the C-C bond in ketene ($1.297 \rightarrow 1.488 \text{ Å}$) and the slight shortening of the C-O bond ($1.164 \rightarrow 1.097 \text{ Å}$); these structural alterations are even more pronounced for the oxirene system; C-C $1.248 \rightarrow 1.416 \text{ Å}$; C-O $1.548 \rightarrow 1.317 \text{ Å}$ (Figure 1). The positive charges are, as in most other dications,^{1,2,4,5} dispersed substantially to the hydrogen periphery which is favoured both electrostatically and by the electropositive nature of hydrogen.

$$(1) + CH_4 \rightarrow H_3C - C = O + CH_3^+$$
(1)

An approximate value for the heat of formation, $\Delta H_{\rm f}^{\circ}$, of (1) is available by calculating the heat of reaction, $\Delta H_{\rm r}^{\circ}$, for equation (1). By combining the so-obtained $\Delta H_{\rm r}^{\circ}$ value [$\Delta H_{\rm r}^{\circ}$ = -213.6 kcal mol⁻¹ at MP2/6-31G*//4-31G; total energies of -40.32234 (CH₄), -152.47525 (CH₃CO⁺), -39.32503 Hartrees (CH₃⁺)] with the experimental $\Delta H_{\rm f}^{\circ}$ for CH₄ (-18 kcal mol⁻¹),¹⁵ CH₃CO⁺ (157 kcal mol⁻¹),¹⁶ and CH₃⁺ (262 kcal mol⁻¹))¹⁵ a heat of formation of 651 kcal mol⁻¹ is obtained for CH₂=C=O²⁺. This high value, together with the strongly exothermic $\Delta H_{\rm r}^{\circ}$ for the disproportionation reaction in equation (1), for which the driving force is undoubtedly charge separation, indicates the high thermodynamic instability of (1). It is highly unlikely that (1) (and also the other C₂H₂O²⁺ isomers) will ever be a viable chemical intermediate

Figure 1. Geometries (bond lengths in Å, bond angles in degrees) and charge distributions (given in parentheses) were calculated by using the 4-31G⁸ and 6-31G^{*} basis sets,⁹ employing a modified version of the Gaussian 76 series of programmes.¹⁰ Gradient optimization techniques¹¹ were used to locate stationary points. Single-point energy calculations of 4-31G geometries were performed with the 6-31G^{*} basis set incorporating valence electron correlation *via* second order Møller–Plesset perturbation (MP2) theory.¹² The GRADSF series of programmes¹³ was used to calculate vibrational frequencies at the 4-31G level thus allowing the inclusion of the effects of zero-point energies. A scaling factor of 0.9 was used for calculating Z.P.E. in order to account for the fact that the normal frequencies are overestimated at the Hartree–Fock level by 10%.¹⁴

Table	1.	Total	energies	(Hartree),	relative	energies	$(E_{rel},$	kcal	mol-1),	and	zero-point	energies	(Z.P.E.,	kcal	mol-1)	for	the
singlet	a di	cations	of ketene	(1) and oxir	ene (2). ^b												

	4-31G//4-31G	$E_{\rm rel}$	6-31G*//4-31G	$E_{\rm rel}$	MP2/6-31G*// 4-31G	$E_{\rm ret}$	Z.P.E.// 4-31G	$E_{\rm rel}^{\rm c}$
1)	-150.5115	0	-150.75342	0	-151.13734	0	18.8	0
2)	-150.4153	60.3	-150.70693	29.2	-151.09394	27.2	18.4	26.8

^a Triplet states were also calculated for all $C_2H_2O^{2+}$ species mentioned but found to be as much as >95 kcal mol⁻¹ higher in energy than the singlet ground state of (1). This does not hold for the species HC-COH²⁺, whose triplet/singlet energies are comparable. For determining I.E., for CH₂=C=O⁺⁺ the following total energies (MP2/6-31G^{*}//4-31G) were used: CH₂=C=O⁺⁺ -151.81229; CH₂=C=O²⁺ (with the geometry of the cation radical of ketene) -151.13027. ^b 1 Hartree = 627.07 kcal mol⁻¹ = 2.6255 × 10³ kJ mol⁻¹. ^c Refers to MP2/6-31G^{*}//4-31G + Z.P.E.

in solution, because the dications will immediately strip an electron or an atom from an adjacent neutral (or negatively charged) molecule. In the gas phase, however, dissociation according to equation (2) does not take place spontaneously, as evidenced by mass analysed ion kinetic energy analysis of possible fragmentation products in the above-mentioned charge stripping experiment. As ΔH_r° for reaction (2) is also exothermic [$\Delta H_r^\circ = -3.3 \text{ kcal mol}^{-1}$ at the MP2/6-31G*//4-31G level using total energies of -38.63512 (CH₂+•) and -112.50749 Hartrees (CO+•)], spontaneous dissociation is prevented by a barrier, thus making the inherently thermodynamically unstable dications kinetically accessible. This is a property typical of many doubly charged species studied.^{1,4,5}

$$(1) \to CH_2^{+ \cdot} + CO^{+ \cdot} \tag{2}$$

The dication of oxirene (2) cannot be studied experimentally because of the lack of a stable gas phase precursor. Nevertheless, the calculations indicate that this species should be stable towards spontaneous dissociations as in equation (3); for equation (3) ΔH_r° is as high as 124.4 kcal mol⁻¹ [based on MP2/6-31G*//4-31G values for O⁺⁺ (-74.23307) and C₂H₂⁺⁺ (-76.66253 Hartrees)].

$$(2) \rightarrow O^{+} + HC = CH^{+}$$
(3)

In analogy with (1), the oxirene dication (2) is also found to be thermodynamically extremely unstable. This is emphasized by the strongly exothermic heat of reaction for the disproportionation process, equation (4) $[\Delta H_r^{\circ} = -182.4 \text{ kcal} \text{ mol}^{-1};$ the MP2/6-31G*//4-31G energy for the oxiranyl cation (3) is -152.38210 Hartrees]. This heat of reaction, in combination with the experimental value for the oxiranyl cation (216 kcal mol⁻¹)¹⁶ and of the remaining species, provides an estimate for the heat of formation for doubly-charged oxirene of 678 kcal mol⁻¹.

$$(2) + CH_4 \rightarrow (3) + CH_3^+$$
 (4)

The continuous financial support of our work by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the Fonds National Suisse pour la Recherche Scientifique is gratefully acknowledged. We are indebted to the Computer Centre, TUB, and the Wissenschaftliches Rechenzentrum, Berlin for the generous supply of computer time.

Received, 3rd September 1984; Com. 1254

References

- P. v. R. Schleyer, Am. Chem. Soc., Div. Pet. Chem. Prepr., 1983, 28, 413; K. Lammertsma, M. Barzaghi, G. A. Olah, J. A. Pople, A. J. Kos, and P. v. R. Schleyer, J. Am. Chem. Soc., 1983, 105, 5252.
- 2 Review: G. K. S. Prakash, T. N. Rawdah, and G. A. Olah, *Angew. Chem.*, 1983, **95**, 356.
- K. R. Jennings, Int. J. Mass Spectrom. Ion Phys., 1965, 1, 227; J. Seibl, Org. Mass Spectrom., 1969, 2, 1033; R. G. Cooks, J. H. Beynon, and T. Ast, J. Am. Chem. Soc., 1972, 94, 1004; T. Ast, C. J. Porter, C. J. Proctor, and J. H. Beynon, Bull. Soc. Chim. Beograd, 1981, 46, 135; R. P. Morgan, J. H. Beynon, R. H. Bateman, and B. N. Green, Int. J. Mass Spectrom. Ion Phys., 1978, 28, 171; K. Levsen and H. Schwarz, Mass Spectrom. Rev., 1983, 77.
- 4 For many examples as well as references see: W. Koch, G. Frenking, H. Schwarz, F. Maquin, and D. Stahl, *Int. J. Mass Spectrom. Ion Proc.*, in the press.
- 5 For leading references see: F. Maquin, D. Stahl, A. Sawaryn, P. v. R. Schleyer, W. Koch, G. Frenking, and H. Schwarz, J. Chem. Soc., Chem. Commun., 1984, 504; W. Koch, G. Frenking, F. Maquin, D. Stahl, and H. Schwarz, J. Chem. Soc., Chem. Commun., 1984, 1187; W. Koch, F. Maquin, H. Schwarz, and D. Stahl, J. Am. Chem. Soc., submitted for publication; also ref. 4.
- 6 For comprehensive literature survey and a state of the art *ab initio* calculation on the C₂H₂O potential energy surface see: W. J. Bouma, R. H. Nobes, L. Radom, and C. E. Woodward, *J. Org. Chem.*, 1982, 47, 1869.
- 7 R. Breslow, Acc. Chem. Res., 1973, 6, 393.
- 8 R. Ditchfield, W. J. Hehre, and J. A. Pople, *J. Chem. Phys.*, 1971, 54, 724.
- 9 P. C. Hariharan and J. A. Pople, Mol. Phys., 1974, 27, 209.
- 10 J. S. Binkley, R. A. Whiteside, P. C. Hariharan, R. Seeger, J. A. Pople, W. J. Hehre, and M. D. Newton, Programme No. 368, Quantum Chemistry Programme Exchange, Indiana University, Bloomington, Indiana, U.S.A.
- 11 H. B. Schlegel, J. Comput. Chem., 1982, 3, 214 and references cited therein.
- 12 C. Møller and M. S. Plesset, *Phys. Rev.*, 1934, **46**, 1423; J. A. Pople, J. S. Binkley, and R. Seeger, *Int. J. Quantum Chem.*, *Symp.*, 1976, **10**, 1.
- 13 A. Komornicki, NRCCS Catalogue, 1980, 1, Programme No. QH 04.
- 14 J. A. Pople, H. B. Schlegel, R. Krishnan, D. J. DeFrees, J. S. Binkley, M. J. Frisch, R. A. Whiteside, R. F. Hout, and W. J. Hehre, Int. J. Quantum Chem., Symp., 1981, 15, 269.
- 15 H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem., Ref. Data, Suppl. 1, 1977, 6.
- 16 P. C. Burgers, J. L. Holmes, J. E. Szulejko, A. A. Mommers, and J. K. Terlouw, *Org. Mass Spectrom.*, 1983, **18**, 254; J. C. Traeger, R. G. McLoughlin, and A. J. C. Nicholson, *J. Am. Chem. Soc.*, 1982, **104**, 5318.