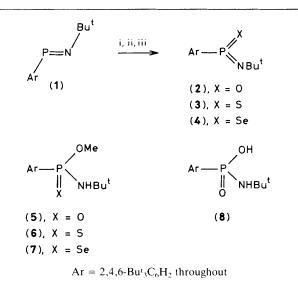
Synthesis of Stable Monomeric Metaphosphonimidates, Aryl(oxo, thioxo-, or selenoxo-)iminophosphoranes

Leonid N. Markovski,* Vadim D. Romanenko, Alexander V. Ruban, and Andrei B. Drapailo


Institute of Organic Chemistry, Academy of Sciences of Ukrainian S.S.R., Kiev, 252660, U.S.S.R.

The title compounds $ArP(X)=NBu^t$ ($Ar = 2,4,6-Bu^t_3C_6H_2$; X = 0, S, or Se), the first examples of sterically protected stable metaphosphonimidates, have been synthesised in good yield by the reaction of the iminophosphine $ArP=NBu^t$ with ozone, sulphur, or selenium.

Although the chemistry of phosphorus compounds with $p_{\pi}-p_{\pi}$ double bond has been an exciting area of development in the last ten years, little information is available concerning monomeric metaphosphonates. The majority of these unusually hybridized phosphorus derivatives have a very short lifetime and they rapidly polymerize in the absence of trapping agent.^{1,2} Important recent developments include the isolation of sterically protected stable three-co-ordinate pentavalent organophosphorus compounds ArPS₂,^{3,4} ArP(O)=PAr,⁵ and ArP(S)=PAr.⁶ However attempts to isolate the metaphosphonates ArPO₂⁷ and ArP(O)=NAr⁸ were unsuccessful.

We recently reported the first isolation of the thermally stable iminophosphines ArP=NR, containing a sterically protected phosphorus-nitrogen double bond.9 Starting from these compounds we have now synthesized the metaphosphonimidates, which are stable as monomers. Treatment of (1)[†] in dry benzene with 1 equiv. of sulphur at 50 °C for 3 h under argon gives after evaporation the solid (3) which can be recrystallized from pentane in 62% yield, m.p. 54-56 °C. Similar reaction of (1) with selenium affords (4), (72%), m.p. 68-70 °C (from pentane). The compounds (3) and (4) form pale yellow crystals which are sensitive to atmospheric moisture but which are fairly stable at 20 °C. Unlike sulphur and selenium, molecular oxygen does not react with the iminophosphine (1). However the oxidation of (1) (10 mmol) with ozone in CH_2Cl_2 (30 ml) at -78 °C leads to the metaphosphonimidate (2) as a colourless viscous oil in ca. 87% yield (³¹P n.m.r.). The latter observation provides an interesting contrast with the diphosphene ArP=PAr in which the P=P bond is cleaved by ozone under the same conditions.¹⁰

The composition and constitution of the products of the addition of oxygen, sulphur, and selenium to the iminophosphine (1) were confirmed by elemental analysis, cryoscopic

Scheme. 1. Reagents and conditions: i, ozone (1 equiv.), CH_2Cl_2 , -78 °C; ii, sulphur, C_6H_6 , 50 °C, 3 h; iii, selenium, C_6H_6 , reflux, 4 h.

molecular weight determinations, spectral data, and by chemical conversions. That compounds (2), (3) and (4) are the metaphosphonimidates, and not the 1,2,3-oxa-, thia-, or selena-azaphosphiridines is evident from n.m.r. and i.r. data (Table 1).‡ In particular, the low ³¹P chemical shifts are only compatible with a three co-ordinate, sp²-hybridized state of phosphorus.¹¹

The metaphosphonimidates (2), (3), and (4) smoothly add methanol to produce virtually quantitative yields of the corresponding phosphonic amides (5)—(7). Similarly, the

[†] Prepared according to ref. 9 from $(Me_3Si)_2NP=NBu^t$ and 2,4,6-tri-tbutylphenyl-lithium, 36% yield, b.p. 125—130 °C at 0.02 mmHg. Spectroscopic data for (1): ¹H n.m.r. $(C_6D_6) \delta$ 7.45 (s, 2H, ArH), 1.48 (s, 18H, *o*-Bu^t), 1.44 (d, *J* 1.9 Hz, 9H, Bu^tN), and 1.22 (s, 9H, *p*-Bu^t); ³¹P n.m.r. $(CH_2CI_2) \delta$ 451.8 p.p.m.

[‡] The metaphosphonimidate (2) is stable for several days at 0 $^{\circ}$ C but shows significant polymerization at 25 $^{\circ}$ C. Unlike compounds (3) and (4) which were purified without difficulty, compound (2) could not be completely freed of small amounts of unidentified impurities.

Table 1. ³¹P and ¹H N.m.r.^a and i.r.^b data for compounds (2), (3), and (4).

	(2)°	(3)	(4)
34 P	93.5	162.4	154.8 ^a
$^{1}\mathrm{H}\left(J_{\mathrm{HP}}\right)$			
Bu'N	1.46(0.85)	1.53(1.5)	1.52(1.5)
p-Bu ^t	1.30	1.12	1.13
o-Bu ^t	1.74	1.67	1.65
C_6H_2	7.50(6.0)	7.25 (5.5)	7.30(5.0)
i.r., v (P=X)	1240	730	700

^a N.m.r. spectra were recorded on a Bruker WP-200 spectrometer operating at 81.0 (³¹P) and 200 MHz (ⁱH); 30% solution in C₆D₆ unless otherwise specified, 85% H₃PO₄ as external standard for ³¹P and Me₄Si as internal standard for ¹H; δ in p.p.m., *J* in Hz. ^b Nujol, cm⁻¹, ^c ¹H n.m.r. in CDCl₃, ^d ¹J(P=Se) 903 Hz.

metaphosphonimidate (2) reacts with H_2O in tetrahydrofuran to give an 83% yield of the amide (8). Compounds (5)—(8) were characterized by elemental analysis and ¹H and ³¹P n.m.r. spectroscopy.

Received, 26th June 1984; Com. 898

References

- 1 For a review see: M. Regitz and G. Maas, *Top. Curr. Chem.*, 1981, 97, 71.
- 2 G. Bertrand, J. P. Majoral, and A. Baceiredo, *Tetrahedron Lett.*, 1980, 21, 5015; M. Regitz and H. Eckes, *Tetrahedron*, 1981, 37, 1039; S. Bracher, J. I. G. Cadogan, I. Gosney, and S. Yaslak, *J. Chem. Soc.*, *Chem. Commun.*, 1983, 857; J. I. G. Cadogan, *Phosphorus Sulfur*, 1983, 18, 229; Th. A. van der Knaap, Th. C. Klebach, R. Lourens, M. Vos, and F. Bickelhaupt, *J. Am. Chem. Soc.*, 1983, 105, 4026.
- 3 R. Appel, F. Knoch, and H. Kunze, Angew. Chem., Int. Ed. Engl., 1983, 22, 1004.
- 4 J. Navech, J. P. Majoral, A. Meriem, and R. Kraemer, *Phosphorus Sulfur*, 1983, 18, 27.
- 5 M. Yoshifuji, K. Ando, K. Toyota, I. Shima, and N. Inamoto, J. Chem. Soc., Chem. Commun., 1983, 419.
- 6 M. Yoshifuji, K. Shibayama, N. Inamoto, K. Hirotsu, and T. Higuchi, J. Chem. Soc., Chem. Commun., 1983, 862.
- 7 J. I. G. Cadogan, A. H. Cowley, I. Gosney, M. Pakulski, and S. Yaslak, J. Chem. Soc., Chem. Commun., 1983, 1408.
- 8 A. Baceiredo, G. Bertrand, P. Mazerolles, and J. P. Majoral, J. Chem. Soc., Chem. Commun., 1981, 1197.
- 9 V. D. Romanenko, A. V. Ruban, and L. N. Markovski, J. Chem. Soc., Chem. Commun., 1983, 187.
- 10 A. M. Caminade, F. El Khatib, and M. Koenig, *Phosphorus Sulfur*, 1983, 18, 97.
- 11 E. Niccke and D.-A. Wildbredt, J. Chem. Soc., Chem. Commun., 1981, 72: E. Niecke, A. Seyer and D.-A. Wildbredt, Angew. Chem., Int. Ed. Engl., 1981, 20, 675.