Chemical Communications

Number 7 1984

Pseudorotation Pathway and Quadratic Force Field for PF₅, by Ab Initio Calculations

Colin J. Marsden

Department of Inorganic Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia

Extensive *ab initio* calculations have yielded a detailed mechanism for Berry pseudorotation in PF₅, for which a barrier of 16 \pm 2 kJ mol⁻¹ is obtained, and a complete quadratic force field which gives an excellent account of observed vibrational frequencies.

As the prototype five-co-ordinate species, phosphorus pentafluoride occupies a position of pivotal importance in the understanding of fluxional molecules and their dynamics. The Berry pseudorotation (or inversion) process,¹ which rapidly interconverts axial and equatorial fluorine atoms in the trigonal bipyramid, has never been directly observed, and the energy barrier to pseudorotation is not known experimentally with any precision. In this communication, an extensive series of *ab initio* molecular orbital calculations are reported, which have established the mechanism by which pseudorotation occurs. The complete quadratic force field of PF_5 , which previously was unknown, has also been calculated, since it cannot be established from the experimental data available.^{2,3}

The program Gaussian 80⁴ was used, with a basis of better than double-zeta quality (11s7p1d/6s4p1d on P, 9s5p/4s3p on F). Geometries were optimized and forces obtained by gradient techniques. Calculated parameters for the equilibrium D_{3h} geometry are indistinguishable from experimental values:⁵ P–F_{ax} 157.5 pm (expt. r_g 157.7 ± 0.5 pm⁵), P–F_{eq} 153.7 pm (r_g 153.4 ± 0.5 pm⁵).

During pseudorotation, two F-P-F angles increase from 90° to 120° , while two others decrease from 120° to 90° , as shown in Figure 1. The minimum energy pathway for

Figure 1. Minimum energy pathway for pseudorotation in PF₅; \bullet : points of $C_{2\nu}$ symmetry, apart from initial and final D_{3h} geometries; \blacktriangle : optimised $C_{4\nu}$ geometry, shown to be the transition state.

inversion was determined by fixing the angle F¹–P–F⁴ at seven equally spaced values between 90 and 120°, then optimizing the four remaining geometrical parameters under the constraint of C_{2v} symmetry. Results are presented in Table 1 and Figure 1. Changes in bond lengths and angles are coupled, so as to minimize repulsive interactions between F atoms. The closest $F \cdot \cdot \cdot F$ separation is found to be only 4.3 pm less than the equilibrium $F_{ax} \cdot \cdot F_{eq}$ distance. Also included in Table 1 are the optimized parameters for the C_{4v} square pyramidal structure. Its geometry and relative energy interpolate smoothly into the C_{2v} pathway, thereby establishing that the pseudorotation transition state has C_{4v} symmetry. This has hitherto always been assumed, rather than demonstrated; it is not necessary.

An energy barrier to pseudorotation of 20.1 kJ mol⁻¹ is obtained at the SCF level. Correlation energies were estimated by second-order Møller–Plesset perturbation theory at the SCF D_{3h} and $C_{4\nu}$ geometries, lowering the barrier to 17.1 kJ mol⁻¹. Similar small reductions in barrier height have been found in correlated studies of PH₅⁶ and SiH₅⁻⁷.⁷ An earlier SCF calculation on PF₅,⁸ using a smaller basis than here, produced a barrier of 20.2 kJ mol⁻¹; assuming the geometries of ref. 8, addition of polarization functions to the fluorine

Table 1. Ab initio minimum energy pathway for PF5 pseudorotation. ^a								
∠F ¹ –P–F ⁴	$\angle F^1 - P - F^2$	$r(P-F^1)$	$r(P-F^2)$	$r(P-F^4)$	ΔE^{b}			
90.0	120.0	153.74	153.74	157.50	0.0			
93.75	115.93	152.65	154.36	157.45	5.19			
97.5	110.02	152.11	155.28	157.18	14.68			
101.25	103.86	152.08	156.05	156.48	19.83			
102.33c	102.33	152.14	156.25	156.25	20.08			
105.0	99.18	152.30	156.63	155.72	18.74			
108.75	95.82	152.62	157.03	155.05	13.75			
112.5	93.21	152.98	157.30	154.46	7.47			
116.25	91.45	153.39	157.43	154.02	2.20			
120.0	90.0	153.74	157.50	153.74	0.0			

^a Bond lengths in pm, converged to 0.03 pm, angles in degrees, converged to 0.03°. ^b Energy above the D_{3h} equilibrium geometry, in kJ mol⁻¹. ^c Optimized under $C_{4\nu}$ symmetry.

vibrational wavenumbers, for PF5.ª

				$v_{calc.}/cm^{-1}$	$v_{obs}^{b/cm-1}$
A_1'	6.462 ^c			812	816
	1.250	5.703°		653	648
A_2''	5.176°			943	947
	1.399	2.643		603	575
E'	6.278°			1023	1024
	1.169	2.434		554	533
	-0.083	-0.604	0.458	171	174
E″	2.185			533	520

^a Symmetry co-ordinates are those of ref. 14, but with S_6 and S_7 interchanged. S_1 , S_2 , S_3 , and S_5 are stretching co-ordinates, with S_1 and S_5 involving the equatorial bonds. S_4 and S_8 are symmetric and antisymmetric out-of-plane motions of the equatorial fluorines. S_6 and S_7 are axial and equatorial bending motions. Units are aJ Å^{-m} rad ⁻ⁿ, for *m* stretching and *n* bending co-ordinates. ^b From ref. 15. ^c Value reported here has been scaled by 0.85.

basis reduces the barrier to $18.9 \text{ kJ mol}^{-1.9}$ By combining the effects of electron correlation and basis enlargement, a final barrier of $16 \pm 2 \text{ kJ mol}^{-1}$ is obtained, where the uncertainty allows for residual limitations in the calculations. Earlier experimental values are 16.4,¹⁰ 12.7 ± 0.9 ,¹¹ and $14.3 \text{ kJ mol}^{-1.12}$

Quadratic force constants calculated for PF₅ are presented in Table 2. The diagonal stretching force constants F_{11} , F_{22} , F_{33} , and F_{55} have been scaled, since parameters of this type are systematically overestimated at the Hartree–Fock level. To establish the most appropriate scale factor, stretching force constants were also calculated, using exactly analogous procedures, for the two molecules most closely related to PF₅ whose force fields are known experimentally. Factors of 0.88 and 0.82 were obtained for PF₃ and SF₆, and the average of these, 0.85, was adopted for PF₅. No scaling has been applied to the bending force constants or to any of the off-diagonal elements. Calculated harmonic vibrational frequencies are compared in Table 2 with experimental results. The agreement is most satisfactory, with no gross discrepancies and an average deviation of only 1.5%.

A pleasing correlation is found between valence force constants (N m⁻¹) and bond lengths (pm) in PF₅ and PF₃: P-F_{eq}, 634 and 153.4; P-F in PF₃, 550 and 157.0; P-F_{ax}, 544 and 157.7. There is much greater resistance to axial than equatorial bending in PF₅, shown by F_{66} being substantially larger than F_{77} . In the initial stages of pseudorotation, the 90° angle F¹-P-F⁴ therefore opens up more slowly than the 120°

angle F¹–P–F² closes, as shown in Table 1. Coupling of these two angular changes is governed by the strikingly large off-diagonal element F_{67} . Since this is negative, an in-phase combination of axial and equatorial bending, the pseudorotation co-ordinate, requires less energy than either separately. Behaviour of this type is expected if non-bonded repulsions are important in PF₅, and is also predicted by the VSEPR approach.¹³ The particularly small discrepancy between calculated and observed frequencies for v_7 , which can be regarded as the first phase of pseudorotation, suggests that the mechanism reported here for pseudorotation is essentially accurate.

Vibrational amplitudes calculated for PF_5 from the theoretical force field match the experimental values⁵ to within the latter's uncertainties, but agreement between calculated and observed³ Coriolis coupling constants is no better than moderate. Efforts to use all the experimental data to improve the *ab initio* force field have, so far, failed to give satisfactory results. In addition to potential problems caused by hot bands, Fermi and/or second-order Coriolis resonances may perturb the vibrational band contours from which the experimental coupling constants were derived, as there are several neardegeneracies involving the E' vibrational levels.

I thank Dr. L. Hedberg for the use of her normal co-ordinate program, and Professor I. M. Mills for helpful discussions.

Received, 12th December 1983; Com. 1612

References

- 1 R. S. Berry, J. Chem. Phys., 1960, 32, 933.
- 2 L. Hedberg, J. Phys. Chem., 1982, 86, 593.
- 3 P. Lockett, W. Fowler, and P. M. Wilt, J. Chem. Phys., 1970, 53, 452.
- 4 J. S. Binkley, R. A. Whiteside, R. Krishnan, R. Seeger, D. J. De Frees, H. B. Schlegel, S. Topiol, L. R. Kahn, and J. A. Pople,
 - Quantum Chemistry Program Exchange, 1981, 13, 406.
 - 5 K. W. Hansen and L. S. Bartell, Inorg. Chem., 1965, 4, 1775.
 - 6 F. Keil and W. Kutzelnigg, J. Am. Chem. Soc., 1975, 97, 3623.
 - 7 F. Keil and R. Ahlrichs, Chem Phys., 1975, 8, 384.
 - 8 A. Strich and A. Veillard, J. Am. Chem. Soc., 1973, 95, 5574.
 - 9 A. Strich, Ph.D. thesis, University of Strasbourg, France, 1978.
- 10 L. S. Bernstein, J. J. Kim, K. S. Pitzer, S. Abramowitz, and I. W. Levin, J. Chem. Phys., 1975, 62, 3671.
- 11 L. S. Bernstein, S. Abramowitz, and I. W. Levin, J. Chem. Phys., 1976, 64, 3228.
- 12 V. P. Spiridonov, A. A. Ishchenko, and L. S. Ivaskevich, J. Mol. Struct., 1981, 72, 153.
- 13 See L. S. Bartell and V. Plato, J. Am. Chem. Soc., 1973, 95, 3097.
- 14 L. C. Hoskins and R. C. Lord, J. Chem. Phys., 1967, 46, 2402.
- 15 T. Shimanouchi, J. Phys. Chem. Ref. Data, 1977, 6, 993.