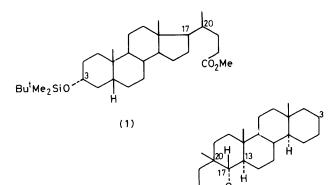
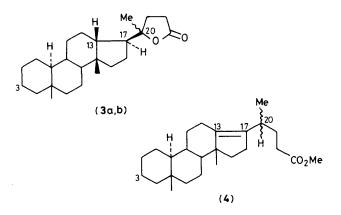
A New Example under Novel Conditions of Backbone Rearrangement of Steroids; Conversion of Methyl Lithocholates into D-Homoandrostane Derivatives Jean-Pierre Bégué and Danièle Bonnet-Delpon


Groupe de Recherche no 12, C.N.R.S., 2, rue Henri-Dunant, 94320 Thiais, France

The backbone rearrangement of the silyl ether of methyl lithocholate (1) leads to p-homoandrostane epimeric lactones (2) in 40% yield.


This note reports the first backbone rearrangement observed in the lithocholic acid series,¹ under unusually mild conditions and ending in a novel manner, whereby the silyl ether of methyl lithocholate (1) can be transformed into D-homoandrostane derivatives. methylene dichloride (1:1), with trifluoroacetic anhydride (3 equiv.) at 0 °C over 18 h, gave the D-homoandrostane lactones (2a) and (2b) (45:55) in 46% yield⁺ (isolated: 39%), and the lactones (3a) and (3b) (55:45) in 11% yield⁺ (isolated: 9%).

Treatment of a solution of (1) in hexafluoropropan-2-ol-

† Determined by capillary g.l.c.

(2) **a**; α -Me, β -[CH₂]₂CO₂**b**; β -Me, α -[CH₂]₂CO₂-

(2a): m.p. 231–234 °C (EtOH), $[\alpha]_{546}^{22}$ –48.7°; (2b): m.p. 185–191 °C, $[\alpha]_{546}^{22}$ +9.7°. The structures (of the D-homo

ring and the δ -lactones) and the configuration assignments of (**2a**) and (**2b**) were determined by n.m.r. spectroscopy (¹H and ¹³C).[‡] The structures of the lactones (**3a**) and (**3b**) were also determined by spectroscopic means (¹H and ¹³C n.m.r., i.r.), but their relative configurations were not determined. (**3a**) or (**3b**): m.p. 187.5–190 °C, [α]₅₄₆²⁷ +29.6°.

It is noteworthy that if the reaction is performed in methylene dichloride alone, the main product is a mixture of the methyl 20(*R*) and 20(*S*) diacholenates (**4**) in 41% yield[†] (isolated 30%),^{2,3} which were transformed into lactones (**2**) and (**3**) by protonation (HF, SbF₅) in CH₂Cl₂. This result shows that these lactones are formed from interactions between the carboxylate group and the positive centres at the C(20) or C(17) positions, arising from different rearrangements.[‡]

Furthermore, when the reaction is performed in CH_2Cl_2 , work-up after 5 min shows that the first fast step in the reaction pathway is the formation of methyl Δ^{2-} and Δ^{3-} cholenate. Evidently in this reaction medium, the transformation of methyl Δ^{2-} and Δ^{3-} cholenate into (4) is a slow process.

We are very grateful to Dr M. Charpentier for helpful discussions.

Received, 28th December 1983; Com. 1665

References

- 1 The only other example of a backbone rearrangement in the A/B *cis* series was reported in D. M. Tal, E. Keinan, and Y. Mazur, *Tetrahedron*, 1981, **37**, 4327, but no yields were given.
- 2 By analogy with 'diacholestene' according to the nomenclature proposed for backbone rearranged chol-13(17)-enes in A. Ensminger, G. Joly, and P. Albrecht, *Tetrahedron Lett.*, 1978, 1575.
- 3 D. M. Tal, H. E. Gottlieb, C. Ben-Ari, and Y. Mazur, Tetrahedron, 1981, 37, 4331.

[‡] Details of structure determination and mechanistic aspects will be published elsewhere in a full paper.