A Clay-modified Electrode with Stereoselectivity

Akihiko Yamagishia and Akiko Aramatab

aFaculty of Science, and bResearch Institute for Catalysis, Hokkaido University, Sapporo 060, Japan

An SnO₂ glass electrode coated with a Δ -Ru(phen)₃²⁺-montmorillonite clay film oxidized racemic Co(phen)₃²⁺ (phen $= 1,10$ -phenanthroline) at 30 °C to produce Λ -Co(phen)₃²⁺ with 7% optical purity.

Recently it was reported that certain tris-chelated complexes were adsorbed by a clay, with a racemic pair being adsorbed as a single unit.¹ For example, racemic Fe(phen)₃²⁺ (phen = 1,lO-phenanthroline) covered the whole surface of a clay with an alternating sequence of the Δ - and Λ -enantiomers, (1), whereas enantiomeric Fe(phen) 3^{2+} covered only 50% of the surface because of the steric interference between the adjacent adsorbents.1 These results led us to pursue the possibility that, if a chemical reaction took place on a clay modified **by** an optically active chelate **(2),** it might proceed stereoselectively to produce an optically active molecule. Such an effect was expected because an unoccupied site in **(2)** could exclusively accept the optical antipode of the primarily adsorbed molecule. In the present study, this selectivity was demonstrated by the electrolytic oxidation of racemic $Co(phen)₃²⁺$ on an SnO₂ electrode coated with a Δ -Ru-(phen)₃²⁺-montmorillonite clay film. Λ -Co(phen)₃²⁺ was produced in enantiomeric excess owing to stereoselective adsorption onto the clay film.

A clay-modified electrode was prepared according to the method of Ghosh and Bard.² An SnO_2 -coated glass plate (0.7)

 \times 2 cm) was soaked in a solution of sodium montmorillonite (10 g l^{-1}) and polyvinyl alcohol (2 g l^{-1}), and subsequently dried to yield a film electrode. Δ -Ru(phen)₃²⁺ was incorporated into the clay by immersing the electrode in a 7 mM Δ -Ru(phen)₃Cl₂ solution overnight. The electrode was then washed with water several times until no Δ -Ru(phen)₃²⁺ dissolved from the electrode.

Figure $1(A)$ shows the cyclic voltammogram at 50 mV/s in 0.05 M Na₂SO₄. The initial current-voltage curve (a) changed gradually to the stationary curve (b) after *ca.* 20 scans. In the stationary state, the peaks at 1.18 and 1.08 V *vs.* the saturated

,Al , **A,** , **A,** , **A,** , **A,** *I*

 (2)

Figure 1. (A) Cyclic voltammograms at 50 mV/s in 0.05 M Na₂SO₄ for Δ -Ru(phen)₃²⁺ incorporated into a clay film on SnO₂ electrodes. (a) initial scan, and (b) after *ca.* 20th scan. Electrode area 10 cm2. (B) Cyclic voltammograms at *ca.* 15th scan of 0.2 V/s. (a) 6×10^{-5} M Δ -Ru(phen)₃Cl₂ + 0.1 M Na₂SO₄ (b) 6 × 10⁻⁵ M Λ -Ru(phen)₃Cl₂ + 0.1 M $\overline{N}a_2\overline{SO}_4$. Electrode area 3 cm².

calomel electrode (S.C.E) were observed in anodic and cathodic sweeps, respectively. The $E_{1/2}$ from these peak potentials was at 1.13 V; the formal redox potential of $Ru(phen)₃²⁺/Ru(phen)₃²⁺ in 1 M H₂SO₄ was reported to be$ 1.02 V *vs.* S.C.E.3 The difference of the peak potentials was 0.1 V. Therefore it was concluded that the Δ -Ru(phen)₃²⁺ adsorbed onto the clay was reversibly oxidized at the $SnO₂$ electrode.

When 6 \times 10⁻⁵ M Δ -Ru(phen)₃²⁺ was added to the electrolyte solution, no significant change occurred in the cyclic voltammogram [Figure l(B) curve a]; *i.e.* , the presence of excess of Δ -Ru(phen)₃²⁺ in the solution had no influence on the redox reaction at the clay film- $SnO₂$ electrode interface. In contrast, the voltammogram changed considerably when 6 \times 10⁻⁵ M Λ -Ru(phen)₃²⁺ was added to the solution [Figure 1(B) curve b]. The current increased by almost 1.5 times at *E* = 1.1 V *vs.* S.C.E. in the anodic sweep, while the current changed little in the cathodic sweep. The observed effect of Λ -Ru(phen)₃²⁺ was reversible; curve (b) reverted to curve (a) when the solution was replaced with a solution of Δ - $Ru(phen)₃²⁺ again. The results suggested that Δ -Ru (phen)₃^{2+}$ was repelled from the $\Delta-Ru(phen)₃^{2+}$ montmorillonite film, while Λ -Ru(phen)₃²⁺ in the electrolytic solution penetrated the clay film until the Λ -Ru(phen) 2^+ was oxidized to Λ -Ru(phen)₃³⁺ at the SnO₂ electrode. At present it is not clear why the production of Λ -Ru(phen)₃³⁺ did not contribute to an increase in the current in the cathodic sweep; it is possible that the Λ -Ru(phen)₃³⁺ produced is reduced to Λ -Ru(phen)₃²⁺ homogeneously. Apart from this, the results confirm that a film of a clay-metal chelate adduct makes an $SnO₂$ electrode stereoselective towards a redox reaction of the same kind of metal chelate. Such stereoselectivity apparently arises from the stereoregular stacking of adsorbed molecules as in **(1)** and **(2).**

The above results show that in **a** racemic mixture electrolytic oxidation of selective Λ -Co(phen)₃²⁺ occurred by penetrating the clay film stereoselectively to yield Λ -Co(phen)₃³⁺ on the SnO₂ electrode. Co(phen) 3^{2+} racemizes rapidly in water.⁴ Since the resultant Λ -Co(phen)₃³⁺ is inert to racemization, optical activity due to the stereoselective production of Λ -Co(phen)₃³⁺ can be observed. An aqueous solution of 0.05 M Na₂SO₄ and *ca*. 1.4×10^{-4} M racemic Co(phen)^{{2+} was electrolysed at 30°C at an electrode potential of 1.3 V *vs.* S.C.E. The electrolysis ceased after 16 h when the current decreased from 75 to $4 \mu A$. The final solution was analysed by means of u.v. and c.d. spectra. The c.d. spectrum obtained was compared with the spectrum of a sample of A-Co- $(phen)₃$ ³⁺ which had been prepared independently.⁵ The spectra show that $Co(phen)₃²⁺$ was completely oxidized to $Co(phen)₃³⁺$ with Λ - $Co(phen)₃³⁺$ in 7% enantiomeric excess. Although the observed selectivity was much lower than expected, these results are the first example of a clay-optically active metal-chelate adduct film electrode inducing asymmetric electrode reactions.

Received, 3rd January 1984; Corn. 002

References

- 1 **A.** Yamagishi and M. Soma, *J. Am. Chem. SOC.,* 1981,103,4640; **A.** Yamagishi, *J. Phys. Chem.,* 1982, **86,** 2472.
- *2* **P.** K. Ghosh and **A.** J. Bard, *J. Am. Chem. SOC.,* 1983, 105, 5691.
- 3 C-T. Lin, W. Bottcher, M. Chou, C. Creutz, and N. Sutin, *J. Am. Chem. SOC.,* 1976, **98,** 6536.
- **4** E. L. Blinn and **R.** G. Wilkins, *Inorg. Chem.,* 1976, 15, 2952.
- *5* C. **S.** Lee, E. M. Gorton, H. M. Neumann, and H. R. Hunt, **Jr.,** *Inorg. Chem.,* 1966, *5,* 1397.