α-Tocopheroxyl Decay: Lack of Effect of Oxygen

Takahisa Doba,^a Graham W. Burton,^a Keith U. Ingold,*^a and Mitsuyoshi Matsuo^b

^a Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6

^b Tokyo Metropolitan Institute of Gerontology, 35–2 Sakaecho, Itabushiku, Tokyo–173, Japan

 α -Tocopherol appears to have been selected as nature's major lipid-soluble, chain-breaking antioxidant because it has a number of superior properties when compared with most synthetic phenolic antioxidants: one of these properties is shown to be very low reactivity of α -tocopheroxyl towards oxygen.

Extensive studies of the inhibited autoxidation of organic compounds, RH, have shown that the more effective phenolic antioxidants react rapidly, and essentially irreversibly, with peroxyl radicals,¹ reaction (1). The resultant phenoxyl radical should be relatively unreactive except towards a second peroxyl radical,¹ reaction (2), and, in certain biological (model) systems, towards a suitable reducing agent such as ascorbate, AscH⁻,^{2—6} reaction (3). This means that chain transfer by reaction with RH, reaction (4), as well as by reaction (-1) should be slow.^{1,7} It further implies that both the bimolecular self-reaction of ArO[•] radicals, reaction (5), and their reaction with O₂, reaction (6), should also be slow.

$$ROO \cdot + ArOH \frac{\text{tast}}{\text{slow}} ROOH + ArO \cdot$$
(1)

~

c . . .

$$ROO + ArO \xrightarrow{\text{tast}} Non-radical products$$
 (2)

$$ArO + AscH \rightarrow ArOH + Asc \rightarrow (3)$$

 $ArO^{\bullet} + RH \longrightarrow ArOH + R^{\bullet}$ (4)

$$ArO + ArO \longrightarrow Non-radical products$$
 (5)

ArO· + $O_2 \longrightarrow$ Radical products (6)

Living organisms, including man, utilize vitamin E as their major, and possibly only, lipid-soluble, phenolic antioxidant.^{8,9} We have shown that α -tocopherol, α -T (the most important of the 4 tocopherols constituting vitamin E) and a number of structurally related phenols react extremely rapidly with ROO radicals.^{10,11} That chain transfer can occur between the α -T radical α -T, and the methyl esters of unsaturated fatty acids [reaction (4)] appears to have been demonstrated, 12 but it seems probable that this is not a particularly fast (and, hence, important) reaction under physiological conditions. There have previously been some room temperature kinetic studies involving α -T· in reaction (3) (fast, $k_3^{\alpha-T}$ = $1.55 \times 10^{6} \text{ mol}^{-1} \text{ dm}^{3} \text{ s}^{-1}$ and reaction (5) (slow, $2k_{5}^{\alpha-T} =$ $180 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ in CHCl₃, ¹³ 350 mol⁻¹ dm³ s⁻¹ in cyclohexane,¹⁴ and 0.061 mol⁻¹ dm³ s⁻¹ in benzene¹⁵) but there do not appear to have been any kinetic studies involving α -T· in reactions (-1), (2), and (6), though reactions $(-1)^{15}$ and $(2)^{10,11}$ appear to be fairly rapid. As we report herein, reaction (6) is too slow to compete with reaction (5) at the highest oxygen concentrations that are experimentally convenient.

Benzene-di-t-butyl peroxide (10:1, v/v) solutions of α -T were subect to a single, brief pulse of u.v. light while held in the cavity of an e.s.r. spectrometer. Generation of α -T· was essentially instantaneous [reactions (7) and (8)]. Decay of α-T· was monitored at 23 °C using various initial concentrations of α -T (1, 5, and 50 \times 10⁻³ M) and with samples that had either been degassed and sealed under high vacuum or were continuously saturated with O_2 at 760 Torr. With initial [α -T·] = $ca. 2 \times 10^{-5}$ M, decay followed 'clean' second order kinetics down to $[\alpha$ -T·] $\leq 4 \times 10^{-6}$ M in all cases with $2k_5^{\alpha-T} = 3 \times 10^3$ mol⁻¹ dm³ s⁻¹ both in the absence and in the presence of oxygen. Since the O₂ concentration is $ca. 9.2 \times 10^{-3} \text{ M},^{16}$ we estimate that k_6 must be $\langle 2k_5^{\alpha-T} [\alpha-T^{\cdot}]/[O_2] = 6.5 \text{ mol}^{-1} \text{ dm}^3 \text{s}^{-1}$. The PhO· radical is also known to be unreactive towards O_2 on the time scale of its bimolecular self-reaction,¹⁷ which is, however, diffusion-controlled.¹⁸ The only ArO'/O_2 reaction to have been subject to kinetic study involved the extremely persistent tri-t-butyl phenoxyl radical;¹⁹ decay followed termolecular kinetics [reaction (9)] and k_9 can be calculated to be $ca \ 3 \times 10^5 \text{ mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$ at $25 \,^{\circ}\text{C}^{.19}$ If α -T[·] reacts in this way, $k_9^{\alpha-T} \ll 2k_5^{\alpha-T} [\alpha$ -T[·]]² $[\alpha$ -T[·]]²[O₂] = 3 × 10⁵ mol⁻² dm⁶ s⁻¹. We conclude that the slowness of the reaction between α -T[·] and O₂ provides yet one more reason why α -T appears to have been selected as nature's major lipid soluble, chain-breaking antioxidant.

$$Me_3COOCMe_3 \xrightarrow{hv} 2Me_3CO$$
 (7)

$$Me_3CO \cdot + \alpha - T \longrightarrow Me_3COH + \alpha - T \cdot$$
 (8)

$$2 \operatorname{ArO} + O_2 \longrightarrow \operatorname{Non-radical products}$$
(9)

The larger value found for $2k_5^{\alpha \cdot T}$ in this work, compared with previous studies,¹³⁻¹⁵ is readily explained. The kinetics of the decay of a great many ArO· are complicated by the reversible formation of diamagnetic dimer and/or disproportionation products [reaction (10)].²⁰⁻²² If ArO· decay is monitored under anything other than '*initial*' conditions, *i.e.*, in a completely '*fresh*' solution of ArO·, there is a high probability that the reversible and irreversible decay processes will become mixed in varying proportions. The measured value for $2k_5$ will be less than the true value for the *initial* dimerization and/or disproportionation, *i.e.*, it will be $<2[k_{10}(dim) + k_{10}(dis)]$, and the measured decay may even follow first order kinetics.²² At low temperatures α -T· has been reported to dimerize.²³ In our experiments with 'fresh' α -T· decay followed clean second order kinetics for more than 80% of the reaction, but a small 'residual' signal took a long time to decay completely.

ArOH + ArO_{-H}
$$\stackrel{k_{10}(\text{dis})}{\longleftrightarrow}$$
 2ArO· $\stackrel{k_{10}(\text{dim})}{\longleftrightarrow}$ (ArO)₂ (10)
Final reaction products

Kinetic studies on other T· and related ArO· serve to confirm the conclusion drawn from α -T·. For example, with β -T· the apparent value of $2k_5\beta^{\beta-T}$ decreased drastically with repeated measurements on the same sample, while with γ -T· the decay rapidly switched to first order kinetics. Initial values of $2k_5$ for β -, γ -, δ -, and 5,7-dimethyl-T· are *ca*. 4×10^4 , 4.5×10^4 , 1.5×10^5 , and $4.5 \times 10^3 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$, respectively. For β - and δ -T· it was shown that O₂ had no significant effect on these rate constants.

This work was supported by a grant from the National Foundation for Cancer Research.

Received, 28th December 1983; Com. 1658

References

- 1 L. R. Mahoney, Angew. Chem., Int. Ed. Engl., 1969, 8, 547.
- 2 A. L. Tappel, Vitam. Horm. (N. Y.), 1962, 20, 493.
- 3 J. E. Packer, T. F. Slater, and R. L. Willson, *Nature*, 1979, 278, 737.
- 4 L. R. C. Barclay, S. J. Locke, and J. M. MacNeil, *Can. J. Chem.*, 1983, **61**, 1288.
- 5 E. Bascetta, F. D. Gunstone, and J. C. Walton, *Chem. Phys. Lipids*, 1983, **33**, 207.
- 6 E. Niki, J. Tsuchiya, R. Tanimura, and Y. Kamiya, Chem. Lett., 1982, 789.
- 7 J. R. Thomas, J. Am. Chem. Soc., 1963, 85, 2166; 1964, 86, 4807.
- 8 G. W. Burton, A. Joyce, and K. U. Ingold, Lancet (ii), 1982, 327.
- 9 G. W. Burton, A. Joyce, and K. U. Ingold, Arch. Biochem. Biophys., 1983, 221, 281.
- 10 G. W. Burton and K. U. Ingold, J. Am. Chem. Soc., 1981, 103, 6472.
- 11 G. W. Burton, L. Hughes, and K. U. Ingold, J. Am. Chem. Soc., 1983, 105, 5950.
- 12 K. E. Peers, D. T. Coxon, and H. W-S. Chan, J. Sci. Food Agric., 1981, 32, 898; K. E. Peers and D. T. Coxon, Chem. Phys. Lipids, 1983, 32, 49.
- 13 R. Repges and M. Sernetz, Ber. Bunsenges. Phys. Chem., 1969, 73, 264.
- 14 M. G. Simic in 'Autoxidation in Food and Biological Systems,' eds. M. G. Simic and M. Karel, Plenum Press, New York, 1980, pp. 17-26.
- 15 J. Tsuchiya, E. Niki, and Y. Kamiya, Bull. Chem. Soc. Jpn., 1983, 56, 229.
- 16 H. I. Joschek and L. I. Grossweiner, J. Am. Chem. Soc., 1966, 88, 3261.
- 17 B. Maillard, K. U. Ingold, and J. C. Scaiano, J. Am. Chem. Soc., 1983, 105, 5095.
- 18 G. Dobson and L. I. Grossweiner, *Trans. Faraday Soc.*, 1965, 61, 708.
- 19 A. P. Griva and E. T. Denisov, Int. J. Chem. Kinet., 1973, 5, 869.
- 20 S. A. Weiner, J. Am. Chem. Soc., 1972, 94, 581.
- 21 L. R. Mahoney and S. A. Weiner, J. Am. Chem. Soc., 1972, 94, 585.
- 22 S. A. Weiner and L. R. Mahoney, J. Am. Chem. Soc., 1972, 94, 5029.
- 23 K. Mukai, N. Tsuzuki, K. Ishizu, S. Ouchi, and K. Fukuzawa, Chem. Phys. Lipids, 1981, 29, 129.