a-Tocopheroxyl Decay: Lack of Effect of Oxygen

Takahisa Doba,^a Graham W. Burton,^a Keith U. Ingold,*a and Mitsuyoshi Matsuo^b

^a*Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada KIA OR6*

^b*Tokyo Metropolitan Institute of Gerontology,* **35-2** *Sakaecho, Itabushiku, Tokyo- 173, Japan*

a-Tocopherol appears to have been selected as nature's major lipid-soluble, chain-breaking antioxidant because it has a number of superior properties when compared with most synthetic phenolic antioxidants: one of these properties **is** shown to be very low reactivity of a-tocopheroxyl towards oxygen.

Extensive studies of the inhibited autoxidation of organic antioxidants react rapidly, and essentially irreversibly, with peroxyl radicals, l reaction (1). The resultant phenoxyl radical should be relatively unreactive except towards a second (model) systems, towards a suitable reducing agent such as transfer by reaction with RH, reaction (4), as well as by the bimolecular self-reaction of ArO' radicals, reaction *(5),* compounds, RH, have shown that the more effective phenolic peroxyl radical,' reaction (2), and, in certain biological ascorbate, Asc H^{-1} , ²⁻⁶ reaction (3). This means that chain reaction (-1) should be slow.^{1,7} It further implies that both and their reaction with O_2 , reaction (6), should also be slow.

$$
ROO \cdot + ArOH \xrightarrow[slow]{\text{fast}} ROOH + ArO \cdot \tag{1}
$$

$$
ROO+ + ArO+ \xrightarrow{fast} Non-radical products \t(2)
$$

$$
OO· + ArO· \xrightarrow{fast} Non-radical products
$$
 (2)
ArO· + AscH⁻ \longrightarrow ArOH + Asc⁻ (3)

(4)

$$
ArO^{\star} + RH \longrightarrow ArOH + R^{\star} \tag{4}
$$

ArO \star + ArO \star \longrightarrow Non-radical products \tag{5}

 $ArO' + O_2 \longrightarrow$ Radical products *(6)*

Living organisms, including man, utilize vitamin E as their major, and possibly only, lipid-soluble, phenolic antioxidant.^{8,9} We have shown that α -tocopherol, α -T (the most important of the **4** tocopherols constituting vitamin E) and a number of structurally related phenols react extremely rapidly with ROO radicals.^{10,11} That chain transfer can occur between the α -T radical α -T^{*}, and the methyl esters of unsaturated fatty acids [reaction (4)] appears to have been demonstrated,¹² but it seems probable that this is not a particularly fast (and, hence, important) reaction under physiological conditions. There have previously been some room temperature kinetic studies involving α -T⁺ in reaction (3) (fast, $k_3^{\alpha+1}$ = 1.55×10^6 mol⁻¹ dm³ s⁻¹)³ and reaction (5) (slow, $2k_5^{\alpha+1}$ = $180 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ in CHCl₃, ¹³ 350 mol⁻¹ dm³s⁻¹ in cyclohexane,¹⁴ and $0.061 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ in benzene¹⁵) but there do not appear to have been any kinetic studies involving α -T· in reactions (-1) , (2) , and (6) , though reactions $(-1)^{15}$ and $(2)^{10,11}$ appear to be fairly rapid. As we report herein, reaction (6) is too slow to compete with reaction *(5)* at the highest oxygen concentrations that are experimentally convenient.

Benzene-di-t-butyl peroxide $(10:1, v/v)$ solutions of α -T were subect to a *single*, brief pulse of u.v. light while held in the cavity of an e.s.r. spectrometer. Generation of *a-T** was essentially instantaneous [reactions (7) and (S)]. Decay of α -T^{\cdot} was monitored at 23^{\circ}C using various initial concentrations of α -T (1, 5, and 50 \times 10⁻³ M) and with samples that had either been degassed and sealed under high vacuum or were either been degassed and sealed under high vacuum or were

continuously saturated with O₂ at 760 Torr. With initial $[\alpha$ -T⁺]
 $= ca. 2 \times 10^{-5}$ M, decay followed 'clean' second order kinetics

down to $[\alpha$ -T⁺] $\leq 4 \$ = *ca.* 2×10^{-5} M, decay followed 'clean' second order kinetics
down to $\lceil \alpha - T^* \rceil \leq 4 \times 10^{-6}$ M in all cases with $2k_5 \alpha$ ^{-T} = 3×10^3 mol⁻¹ dm³ s⁻¹ both in the absence and in the presence of oxygen. Since the O₂ concentration is *ca*. 9.2×10^{-3} M,¹⁶ we estimate that k_6 must be $\ll 2k_5^{\alpha-1}$ $[\alpha$ -T⁺]/[O₂] = $6.5 \text{ mol}^{-1} \text{ dm}^3 \text{s}^{-1}$. The PhO \cdot radical is also known to be unreactive towards O_2 on the time scale of its bimolecular self-reaction, **17** which is, however, diffusion-controlled. 18 The only $ArO₁/O₂$ reaction to have been subject to kinetic study involved the extremely persistent tri-t-butyl phenoxyl radical;¹⁹ decay followed termolecular kinetics [reaction (9)] and k_9 can be calculated to be *ca* 3×10^5 mol⁻² dm⁶ s⁻¹ at 25 °C.¹⁹ If α -T' reacts in this way, $k_9 \alpha$ ^{-T} $\ll 2k_5 \alpha$ ^{-T} $[\alpha$ -T']² $[0_2]$ $= 3 \times 10^5$ mol⁻² dm⁶ s⁻¹. We conclude that the slowness of the reaction between α -T and O₂ provides yet one more reason why α -T appears to have been selected as nature's major lipid soluble, chain-breaking antioxidant.

$$
Me3COOCMe3 \xrightarrow{hv} 2Me3CO'
$$
 (7)

$$
Me3CO \cdot + \alpha \cdot T \longrightarrow Me3COH + \alpha \cdot T'
$$
 (8)

$$
Me3CO+ + \alpha - T \longrightarrow Me3COH + \alpha - T
$$
 (8)

$$
2 ArO' + O_2 \longrightarrow Non-radical products \tag{9}
$$

The larger value found for $2k_5^{\alpha-T}$ in this work, compared with previous studies, $13-15$ is readily explained. The kinetics of the decay of a great many $ArO⁺$ are complicated by the reversible formation of diamagnetic dimer and/or disproportionation products [reaction (10)].²⁰⁻²² If ArO^{*} decay is monitored under anything other than *'initial'* conditions, *i.e.,* in a completely 'fresh' solution of ArO⁺, there is a high probability that the reversible and irreversible decay processes will become mixed in varying proportions. The measured value for $2k_5$ will be less than the true value for the *initial* dimerization and/or disproportionation, *i.e.*, it will be $\langle 2[k_{10}(\text{dim}) + k_{10}(\text{dis})]$, and the measured decay may even follow first order kinetics.²² At low temperatures α -T \cdot has been reported to dimerize.23 In our experiments with 'fresh' *a-T-* decay followed clean second order kinetics for more than 80% of the reaction, but a small 'residual' signal took a long time to decay completely.

$$
ArOH + ArO_{-H} \xrightarrow{k_{10}(dis)} 2ArO' \xleftarrow{k_{10}(dim)} (ArO)_2
$$
\nFinal reaction products

\n
$$
\downarrow
$$
\n(10)

Kinetic studies on other T[.] and related ArO^{*} serve to confirm the conclusion drawn from α -T \cdot . For example, with β -T^{\cdot} the apparent value of $2k_5$ ^{β -T} decreased drastically with repeated measurements on the same sample, while with γ -T^{*} the decay rapidly switched to first order kinetics. Initial values of $2k_5$ for β -, γ -, δ -, and 5,7-dimethyl-T· are *ca.* 4×10^4 , $4.5 \times$ 10⁴, 1.5×10^5 , and 4.5×10^3 mol⁻¹ dm³ s⁻¹, respectively. For β - and δ -T· it was shown that O_2 had no significant effect on these rate constants.

This work was supported by a grant from the National Foundation for Cancer Research.

Received, 28th December 1983; Com. 1658

References

- 1 L. R. Mahoney, *Angew. Chem., Int. Ed. Engl.,* 1969, **8,** 547.
- 2 **A.** L. Tappel, *Vitam. Horm. (N. Y.),* 1962, 20, 493.
- 3 J. E. Packer, T. **F.** Slater, and R. L. Willson, *Nature,* 1979, 278, 737.
- 4 L. R. C. Barclay, **S.** J. Locke, and J. M. MacNeil, *Can. J. Chem.,* 1983, 61, 1288.
- 5 E. Bascetta, **F.** D. Gunstone, and J. C. Walton, *Chem. Phys. Lipids,* 1983,33, 207.
- 6 E. Niki, **J.** Tsuchiya, R. Tanimura, and Y. Kamiya, *Chem. Lett.,* 1982, 789.
- 7 J. R. Thomas, *J. Am. Chem. SOC.,* 1963,85,2166; 1964,86,4807.
- 8 *G.* W. Burton, A. Joyce, and K. U. Ingold, *Lancet (ii),* 1982,327.
- 9 *G.* **W.** Burton, **A.** Joyce, and K. U. Ingold, *Arch. Biochem. Biophys.,* 1983, 221, 281.
- 10 G. W. Burton and K. U. Ingold, J. *Am. Chem. SOC.,* 1981, 103, 6472.
- 11 G. W. Burton, L. Hughes, and K. U. Ingold, J. *Am. Chem. SOC.,* 1983, 105,5950.
- 12 K. E. Peers, D. T. Coxon, and H. W-S. Chan, J. *Sci. Food Agric.,* 1981,32,898; K. E. Peers and D. T. Coxon, *Chem. Phys. Lipids,* 1983, 32, 49.
- 13 R. Repges and M. Sernetz, *Ber. Bunsenges. Phys. Chem.,* 1969, 73, 264.
- 14 M. G. Simic in 'Autoxidation in Food and Biological Systems,' eds. M. G. Simic and **M.** Karel, Plenum Press, New York, 1980, pp. $17 - 26$.
- 15 J. Tsuchiya, E. Niki, andY. Kamiya, *Bull. Chem. SOC. Jpn.,* 1983, 56, 229.
- 16 H. I. Joschek and L. I. Grossweiner, *J. Am. Chem. SOC.,* 1966,88, 3261.
- 17 **B.** Maillard, K. U. Ingold, and J. C. Scaiano, J. *Am. Chem. SOC.,* 1983, 105, 5095.
- 18 G. Dobson and L. I. Grossweiner, *Trans. Faraday SOC.,* 1965,61, 708.
- 19 **A.** P. Griva and E. T. Denisov, *Inr.* J. *Chem. Kinet.,* 1973,5,869.
- 20 **S. A.** Weiner, *J. Am. Chem. SOC.,* 1972, **94,** 581.
- 21 L. R. Mahoney and **S.** A. Weiner, *J. Am. Chem.* **SOC.,** 1972, **94,** 585.
- 22 **S. A.** Weiner and L. R. Mahoney, J. *Am. Chem. SOC.,* 1972, **94,** 5029.
- 23 K. Mukai, N. Tsuzuki, K. Ishizu, **S.** Ouchi, and K. Fukuzawa, *Chem. Phys. Lipids,* 1981, **29.** 129.