A Highly Basic Triphenylphosphine, [2,4,6-(MeO)₃C₆H₂]₃P

Masanori Wada* and Shogo Higashizaki

Department of Applied Chemistry, Osaka University, Suita, Osaka 565, Japan

Tris(2,4,6-trimethoxyphenyl)phosphine was found to be highly basic (pK_a , 11.2).

Triphenylphosphine is useful as a reagent or catalyst in organic chemistry and as a ligand in inorganic chemistry.¹ Its basicity is low, and *para*-substitution of the phenyl groups results in only a small increase in basicity.² Compared to these phosphines, tris(2,4,6-trimethoxyphenyl)phosphine, (1), is expected to show either higher basicity owing to the multi methoxy substitutions (mesomeric effect) or lower basicity owing to the bulkiness of the aryl group (B-strain). We report here that (1) has a very high basicity; probably the highest known for tertiary phosphines.³

Phosphine (1) is easily prepared from $P(OPh)_3$ and 2,4,6trimethoxyphenyl-lithium in diethyl ether at 0°C to room temperature and can be recrystallized from ethanol in air as colourless crystals in 60–70% yield,† m.p. 158–160 °C, ¹H n.m.r. (CDCl₃, 100 MHz) δ 3.47 (s, 2,6-MeO), 3.76 (s, 4-MeO), and 6.03 (d, J 3 Hz, 3,5-H).

Phosphine (1) reacts with perchloric acid in ethanol to give the tertiary phosphonium salt, (2), m.p. 186 °C (decomp.), ¹H n.m.r. (CDCl₃) δ 3.69 (s, 2,6-MeO), 3.89 (s, 4-MeO), 6.17 (d, J 5 Hz, 3,5-H), and 8.35 (d, J 541 Hz, P–H). The same salt was obtained in 88% yield by treating (1) (1 mmol) with NH₄ClO₄ (1.5 mmol) in ethanol (50 cm³), suggesting that (1) has a higher basicity than NH₃ (pK_a, 9.21). Compound (2) can be recrystallized from ethanol containing an excess of Buⁿ₃P

(p K_a , 8.43), which is one of the most basic tertiary phosphines,³ and even from ethanol containing NEt₃ (p K_a , 10.75).

The basicity of (1) was studied further by examining the ¹H n.m.r. spectra of a mixture of (2) and a suitable amine in acetone in the region of the 2,6-MeO proton resonance. It was found to be a stronger base than Et₂NH (p K_a , 11.0), comparable to piperidine (p K_a , 11.2), but weaker than 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (p K_a , 11.5).

A series of methoxy substituted triphenylphosphines \ddagger was also prepared from PPhCl₂ or PPh₂Cl and 2,4,6trimethoxyphenyl-lithium or 2,6-dimethoxyphenyl-lithium.

[†] The preparation of (1) from 1,3,5-(MeO)₃C₆H₃, PCl₃, and ZnCl₂ has been reported (ref. 4).

[‡] All new compounds including (1) have been fully characterized by elemental (C, H, Cl) and spectral analyses.

Their basicities were compared in a similar manner as their tertiary phosphonium perchlorates.[‡] The results can be summarized as follows [abbreviations: (2,4,6) = 2,4,6-(MeO)₃C₆H₂ and (2,6) = 2,6-(MeO)₂C₆H₃]: DBU (pK_a, 11.5) > (1) *ca.* = piperidine (11.2) > NEt₂H (11.0) > NEt₃ (10.75) > P(2,6)₃ > PPh(2,4,6)₂ > γ -collidine (7.4) > PPh(2,6)₂ > pyridine > PPh₂(2,4,6) > PPh₂(2,6) > PPh₃ (2.3² or 2.73³).

Apparently, the basicity of the triphenylphosphines increased as the level of methoxy substitution increased even though the bulkiness also increased. Noteworthy is the higher basicity of $P(2,6)_3$ than $PPh(2,4,6)_2$, suggesting that 2,6-methoxy groups have a greater effect than 4-methoxy groups on the increase in basicity.

Phosphine (1) reacted under mild conditions with a variety of alkyl halides including chlorides to give the quaternary phosphonium salts. In spite of the bulkiness of its aryl groups, (1) (1 mmol) reacted with isopropyl bromide (1 cm³) in less than 1 h in ethanol (20 cm³) at 65 °C, and even reacted with the chloride (2 cm³) in 15 h to give the isopropyl phosphonium salt, (3).

While triphenylphosphine is stable in dichloromethane for a prolonged period, (1) reacted rapidly at room temperature

 $(t_{1/2} < 15 \text{ min in neat CH}_2\text{Cl}_2)$ to give the chloromethyl phosphonium salt, (4). The relative reactivity of the other methoxyphenylphosphines with dichloromethane decreased in the same order as the basicity.

While triphenylphosphine forms 4:1 complexes with Cu^I and Ag^I,⁵ (1) gave the stable 2:1 complexes, (5) and (6), in agreement with its large cone angle (184°).

Received, 30th January 1984; Com. 132

References

- 1 G. M. Kosolapoff and L. Maier, 'Organic Phosphorus Compounds,' Wiley-Interscience, New York, 1972; J. I. G. Cadogan, 'Organophosphorus Reagents in Organic Synthesis,' Academic Press, London, 1979.
- 2 H. Goetz and A. Sidhu, Liebigs Ann. Chem., 1965, 682, 71.
- 3 Wm. A. Henderson, Jr., and C. A. Streuli, J. Am. Chem. Soc., 1960, 82, 5791.
- 4 I. S. Protopopov and M. Y. Kraft, Med. Prom. SSSR, 1959, 13, 5; Chem. Abstr., 1960, 54, 10914c.
- 5 F. A. Cotton and D. M. L. Goodgame, J. Chem. Soc., 1960, 5267.