Reactivity of Trimeric Chlorophosphazenes and Chlorothiaphosphazenes towards Alkyl-lithium Reagents

Herman Winter and Johan C. van de Grampel*

Department of Inorganic Chemistry, Rijksuniversiteit Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Reaction of cyclic chlorophosphazenes and chlorothiaphosphazenes with alkyl-lithium reagents and isopropyl alcohol affords hydrido-isopropoxy derivatives and cyclic alkylated species.

Reactions between $(NPCl_2)_3$ (1) and Grignard reagents, *i.e.* RMgCl and RMgCl- $(Bun_3PCuI)_4$ (R = alkyl), are well documented.¹⁻³ The predominant reaction pathway is presumed to be a metal-halogen exchange process leading to alkylated derivatives in excellent yields. Surprisingly little is known about the reactivity of (1) towards alkyl- and aryllithium reagents. Reactions of (1) with PhLi, PhCH₂Li, or MeLi have been reported to give extensive ring cleavage in addition to the formation of a very small amount of methylated cyclic derivatives in the case of MeLi.⁴

Here we report serendipitous results from the reaction of $(\text{NPCl}_2)_n(\text{NSOPh})_{3-n}$ (n = 1,2,3) with RLi (R = Me, Bu^t).

Reaction of *trans*-NPCl₂(NSOPh)₂ (2) with Bu^tLi (1:1) in tetrahydrofuran (THF) at -78 °C under dry nitrogen, followed by stirring at room temperature for two hours and subsequent treatment with a five-fold excess of PrⁱOH at 0 °C afforded a mixture of three cyclic products, which could be separated by means of h.p.l.c. (silica column,

Et₂O-hexane-MeCN = 1:1:0.005), viz. NPClBu^t(NSOPh)₂ (3) (yield 38%, m.p. 166.0–168.0 °C), NP(H)Bu^t(NSOPh)₂ (4) (yield 8%, m.p. 125.0–127.0 °C), and NP(H)OPrⁱ⁻(NSOPh)₂ (5) (yield 30%, m.p. 77.5–79.5 °C). Structures could be assigned unambiguously on the basis of ³¹P and ¹H n.m.r. spectroscopic (Table 1), mass spectrometric, and micro-analytical data.

By analogy with the alkylation of (1) by RMgCl-(Buⁿ₃-PCuI)₄, the formation of (4) is assumed to proceed according to a metal-halogen exchange process and subsequent reactions with Bu^tLi and PrⁱOH.² Presumably, (5) is formed *via* the intermediate NP(H)Cl(NSOPh)₂; a simple nucleophilic substitution leads to the formation of (3). The elucidation of the complex reaction scheme, however, needs further investigation. The compounds (NPCl₂)₂NSOPh (6) and (1) appeared to be less reactive than (2) towards Bu^tLi. Reaction mixtures contained the starting materials (40%) together with hydridoisopropoxy derivatives (50–60%), NP(H)OPrⁱNPCl₂NSOPh (8) and NP(H)OPrⁱ(NPCl₂)₂ (7), respectively. In the case of (6) small amounts of alkylated species (10%) were also obtained.

In contradiction to literature results, reactions with MeLi did not lead to extensive ring degradation. For instance, reaction of (1) with MeLi (molar ratio 1:1) in THF at -78 °C, followed by stirring at -20 °C for four hours and subsequent

Table 1. ³¹P N.m.r. (81.0 MHz) and ¹H n.m.r. (60 MHz) data (CDCl₃).

	δ(³¹ P)/ p.p.m.		$^{2}J_{\rm PP}/{\rm HZ}$	$^{1}J_{\rm PH}/{\rm Hz}$				${}^{3}J_{\rm HH}/\rm Hz$	${}^{3}J_{\rm PH}/\rm Hz$
					δ(1H)				
	PRR'	PCl ₂			Me	CH	PH		
(3)	51.5				1.2				22.6
(4)	26.7			532.8	1.0		6.6		19.7
(5)	-1.0			731.6	$1.0/1.2^{a}$	4.3	6.8	5.8	
(7)	2.5	20.9	26.0	719.0	1.3	4.5	6.4	5.8	
(8)	1.4	23.3	28.0	725.2	1.4		—	5.8	

^a Two ¹H n.m.r. signals were observed due to the chirality of the ring system.

treatment with a five-fold excess of PrⁱOH at -20 °C, yielded a mixture of cyclic compounds. Extraction of the crude reaction mixture with pentane afforded a white oil (yield about 70%) consisting of (1) (15%) and (7) (85%) (based on ³¹P n.m.r.). Purification of (7) by h.p.l.c. or distillation at reduced pressure failed because of its moisture sensitivity and thermal instability. After sublimation at 60 °C (0.1 mm Hg) and molecular distillation at 100 °C (0.1 mm Hg) a colourless oil could be obtained with a 96% purity of (7).

Under the same reaction conditions (6) provided a white oil (yield about 70%) consisting of (6) and (8) in a ratio of 3:7; in the case of (2) only the hydrido-isopropoxy derivative was formed in a yield of 50%.

This investigation has been supported by the Netherlands Foundation for Chemical Research (S.O.N.) with financial aid from the Netherlands Organization of Advancement of Pure Research (Z.W.O.).

Received, 6th December 1983; Com. 1588

References

- P. J. Harris, J. L. Desorcie, and H. R. Allcock, J. Chem. Soc., Chem. Commun., 1981, 852; H. R. Allcock, J. L. Desorcie, and P. J. Harris, J. Am. Chem. Soc., 1983, 105, 2814.
- 2 H. R. Allcock and P. J. Harris, J. Am. Chem. Soc., 1979, 101, 6221.
- 3 H. R. Allcock, P. J. Harris, and M. S. Connolly, *Inorg. Chem.*, 1981, **20**, 11.
- 4 P. J. Harris and C. L. Fadeley, *Inorg. Chem.*, 1983, 22, 561; M. Biddlestone and R. A. Shaw, *Phosphorus*, 1973, 3, 95; E. T. McBee, H. R. Allcock, R. Caputo, A. Kalmus, C. W. Roberts, and L. Brinkmann, *US Gov. Res. Rep.*, 1959, AD 209, 668.