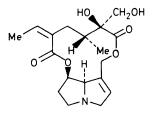
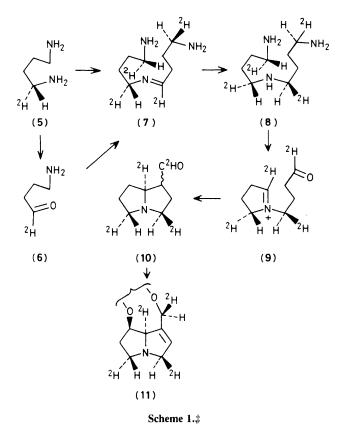
Stereochemistry of Pyrrolizidine Alkaloid Biosynthesis: Incorporation of Chiral [1-²H]Putrescines into Retrorsine

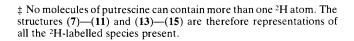

Jatinder Rana and David J. Robins*

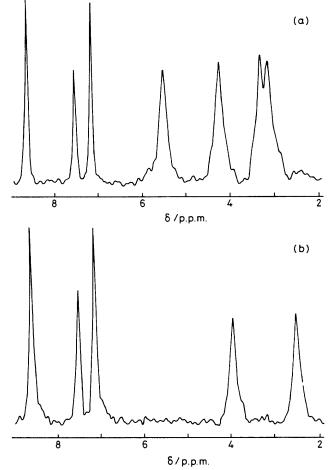
Department of Chemistry, University of Glasgow, Glasgow G12 800, U.K.

²H N.m.r. spectroscopy has been used to establish the labelling patterns in retrorsine (1) derived biosynthetically from (*R*)-[1-²H]- and (*S*)-[1-²H]-putrescine; in the former case retrorsine (11) is equally labelled with ²H at the 3 β , 5 α , 8 α , and 9-*pro-S* positions, while with the latter precursor only the 3 α and the 5 β positions in retrorsine (15) are labelled with ²H.


Many pyrrolizidine alkaloids, including retrorsine (1), contain retronecine (4) as the base portion.^{1,2} Experiments with isotopically labelled compounds have shown that retronecine is derived biosynthetically from two molecules of L-ornithine or L-arginine³ via putrescine (2),^{4,5} and a symmetrical C_4 -N- C_4 intermediate.^{6,7} This latter symmetrical intermediate has been identified as homospermidine (3).^{6,8} We have recently used ²H n.m.r. spectroscopy to establish complete labelling patterns in retrorsine derived biosynthetically from $[1,4-^2H_4]$ - and $[2,3-^2H_4]$ -putrescine.⁹ We have now fed chiral deuteriated putrescines to *Senecio isatideus* plants to produce samples of ²H-labelled retrorsine. ²H N.m.r. spectroscopy has been used to establish the stereochemical course of a number of the enzymic processes involved in retronecine biosynthesis.

(*R*)-[1-²H]Putrescine (5) (96% ${}^{2}H_{1}$ species) was prepared by decarboxylation of L-ornithine in ${}^{2}H_{2}O$ with ornithine





decarboxylase.¹⁰ Similar decarboxylation of $[2-^{2}H]$ -DLornithine in H₂O yielded (*S*)-[1-²H]putrescine (**12**) (91% ²H₁ species).¹⁰ Both samples were converted into their dihydrochlorides, ²H{¹H} n.m.r. (H₂O) δ 3.08 p.p.m. (s). Each precursor (150 mg) together with $[1,4-^{14}C_2]$ putrescine dihydrochloride (25 µCi) was pulse fed into the xylems of four *S*. *isatideus* plants over a two week period. After a further two weeks, retrorsine (**1**) was isolated and recrystallised to constant specific radioactivity.

With (\dot{R}) -[1-2H]putrescine (5) as precursor, the ²H{¹H} n.m.r. spectrum⁹ of retrorsine taken in pyridine at 90 °C

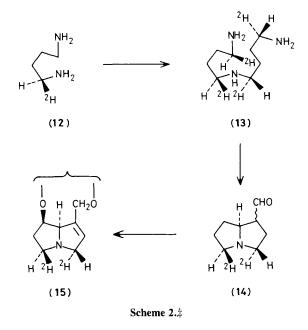


Figure 1. 30.72 MHz ²H{¹H} N.m.r. spectra of retrorsine in pyridine at 90 °C: (a) sample of (11) derived from (*R*)-[1-²H]putrescine (5); (b) sample of (15) derived from (*S*)-[1-²H]putrescine (12). (Natural abundance ²H signals for pyridine are at δ 7.2, 7.6, and 8.7 p.p.m.)

[Figure 1(a)] showed four signals at δ 3.15, 3.30, 4.25, and 5.52 p.p.m. corresponding to retrorsine (11) labelled with ²H at C-3 β , C-5 α , C-8 α , and C-9 pro-S. (The two signals at δ 3.15 and 3.30 p.p.m. could not be resolved when the ²H n.m.r. spectrum was taken in chloroform at 65 °C). The enrichment factors[†] for the four labelled sites are nearly equal at ca. 1.05% ²H. The specific incorporation of ²H per C₄ unit is therefore 2.1% (1.05 \times 2/96 \times 100%), which is in good agreement with the ¹⁴C specific incorporation of 2.0% per C₄ unit. These results suggest that no ²H is lost from (R)-[1-²H]putrescine (5) on its conversion into retrorsine. An explanation for these observations is outlined in Scheme 1. It is known that diamine oxidase removes the pro-S hydrogen stereospecifically from the methylene group of primary amines.¹¹ The initial step in retronecine biosynthesis probably involves the oxidation of putrescine to 4-aminobutanal. The transformation of $(5) \rightarrow (6)$ would thus occur with retention of all the ${}^{2}H$. Coupling between (5) and (6) is then envisaged to produce an imine (7). Stereospecific reduction of this imine with attack of a hydride donor on the si-face of the imine is

[†] The enrichment factor for a labelled site in retrorsine is calculated from {[(integral of labelled site in retrorsine) – (natural abundance contribution)]/(concentration of retrorsine)}/(natural abundance integral of ²H in pyridine at δ 7.6 p.p.m./concentration of pyridine) × 0.0156%.

then required to form homospermidine (8). (The opposite mode of reduction would lead to homospermidine equally labelled at C-3 α , C-3 β , C-5 α , and C-5 β , because of the symmetry of the molecule). Two further enzymic oxidations on homospermidine (8) with removal of the *pro-S* hydrogens would then yield a dialdehyde or its cyclised form (9). Mannich cyclisation of (9) would produce 1-formylpyrrolizidine (10). Finally, stereospecific reduction of the aldehyde (10) with attack of a hydride donor on the *re*-face of the carbonyl group would lead to retrorsine labelled as shown in structure (11). The feasibility of part of the proposed pathway (Scheme 1) has been demonstrated by a synthesis of unlabelled (10) from (3) using diamine oxidase and physiological conditions.¹²

The feeding experiment with (*S*)-[1-²H]putrescine (12) as precursor yielded a sample of retrorsine with a ¹⁴C specific incorporation of 1.9% per C₄ unit. The ²H{¹H} n.m.r. spectrum of this sample taken in pyridine at 90 °C [Figure 1(b)] showed only two signals at δ 2.55 and 3.95 p.p.m. corresponding to retrorsine labelled with ²H at C-3 α and C-5 β . The enrichment factors[†] for these two labelled sites are both *ca*. 0.6% ²H. The specific incorporation of ²H is thus 1.3% per C₄ unit (0.6 × 2/91 × 100%). The loss of ²H relative to ¹⁴C from the precursor (12) is due to the removal of the (S)-[1-2H] atoms during the three oxidation steps of primary amine to aldehyde (12) \rightarrow (14) (Scheme 2). The ²H is only retained when it is next to the nitrogen atom that is incorporated into the pyrrolizidine ring. This leads to the appearance of ²H at C-3 α and C-5 β in retrorsine (15) because of the symmetry of the intermediate (13).

These results are consistent with the following stereochemical details in retronecine biosynthesis. Initial oxidation of putrescine to 4-aminobutanal takes place with loss of the *pro-S* hydrogen. Reduction of the imine formed by coupling of putrescine with 4-aminobutanal occurs by hydride attack on the *si*-face of the imine to yield homospermidine. Two further oxidation steps each result in the removal of *pro-S* hydrogens to give a dialdehyde. Cyclisation of the iminium ion (9) occurs by attack on the *re*-face of the iminium ion to yield the 8α -pyrrolizidine (10). Finally, reduction of the aldehyde takes place on the *re*-face of the carbonyl group.§

We are grateful to Dr. D. S. Rycroft (Glasgow) for running the n.m.r. spectra. We thank the S.E.R.C. for a Research Assistantship (to J. R.).

Received, 10th January 1984; Com. 037

References

- 1 D. J. Robins, Fortschr. Chem. Org. Naturst., 1982, 41, 115.
- 2 D. J. Robins in 'The Alkaloids,' ed. M. F. Grundon, Specialist Periodical Reports, The Royal Society of Chemistry, London, 1978—1983, vols. 8—13.
- 3 D. J. Robins and J. R. Sweeney, Phytochemistry, 1983, 22, 457.
- 4 D. J. Robins and J. R. Sweeney, J. Chem. Soc., Perkin Trans. 1, 1981, 3083, and earlier references cited therein.
- 5 H. A. Khan and D. J. Robins, J. Chem. Soc., Chem. Commun., 1981, 146.
- 6 H. A. Khan and D. J. Robins, J. Chem. Soc., Chem. Commun., 1981, 554.
- 7 G. Grue-Sorensen and I. D. Spenser, J. Am. Chem. Soc., 1981, 103, 3208; Can. J. Chem., 1982, 60, 643.
- 8 J. Rana and D. J. Robins, J. Chem. Res. (S), 1983, 146.
- 9 J. Rana and D. J. Robins, J. Chem. Soc., Chem. Commun., 1983, 1222.
- 10 D. J. Robins, *Phytochemistry*, 1983, **22**, 1133; J. C. Richards and I. D. Spenser, *Can. J. Chem.*, 1982, **60**, 2810.
- 11 A. R. Battersby, J. Staunton, and M. C. Summers, J. Chem. Soc., Perkin Trans. 1, 1976, 1052.
- 12 D. J. Robins, J. Chem. Soc., Chem. Commun., 1982, 1289.

§ Note added in proof: The mode of incorporation of (R)- and (S)-[1-2H]putrescine into a mixture of pyrrolizidine alkaloids has recently been determined, G. Grue-Sorensen and I. D. Spenser, J. Am. Chem. Soc., 1983, **105**, 7401.