Dissociative Substitution in Four-co-ordinate Planar Platinium(II) Complexes. The Kinetics of Sulphoxide Exchange and its Displacement by Bidentate Ligands in the Reactions of *cis*-Di(aryl)bis(dimethyl sulphoxide)platinum(II) in Chloroform and Benzene

Santo Lanza,^a Domenico Minniti,^a Raffaello Romeo,^a Peter Moore,^b John Sachinidis,^b and Martin L. Tobe^{c*}

^a Dipartimento di Chimica Inorganica e Struttura Moleculare, Universita di Messina, 98100 Messina, Italy

^b Department of Chemistry and Molecular Sciences, University of Warwick, Coventry CV4 7AL, U.K.

^c Chemistry Department, University College London, London WC1H 0AJ, U.K.

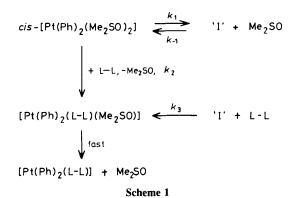
A parallel flow ¹H n.m.r. and u.v. spectrophotometric study of the exchange of Me₂SO with (CD₃)₂SO, and the displacement of Me₂SO by L–L [L–L = 2,2'-bipyridine, 1,10-phenanthroline, and 1,2-bis(diphenylphosphino)ethane] from *cis*-[Pt(Ph)₂(Me₂SO)₂] in CDCl₃ and benzene indicates that the main reaction path is dissociative with [Pt(Ph)₂(Me₂SO)] as the reactive intermediate.

The normal mode of substitution in four-co-ordinate planar d⁸ metal complexes is associative.¹ Attempts to induce a dissociative mode of activation by means of bond weakening² and/or steric hindrance³ generally serve to reduce the nucleophilic discrimination to a point where the substitution takes place by way of solvolysis. The activation remains associative. Only in the case of the isomerisation of *cis*-[Pt(PEt₃)₂(R)(X)] (R = alkyl or aryl; X = Cl, Br, *etc.*) is there good evidence for a rate-limiting dissociation⁴ but, apart from the case where R = 2,4,6-Me₃C₆H₂, the dissociation leading to isomerisation is much slower than the associative substitution.

As part of our study of the mutual labilisation of two cis-sulphoxides,⁵ it was our intention to investigate the effect of strong *trans* influence ligands. To this end we studied the reactions of cis-[Pt(Ph)₂(Me₂SO)₂], in which it has been shown that the phenyl group exerts a significant *trans* influence on the Pt–S bond.⁶ In CDCl₃ solution, a flow ¹H n.m.r. study shows that the complex exchanges co-ordinated-Me₂SO with (CD₃)₂SO according to the rate law, Rate = { $k_1 + k_2$ [Me₂SO]}[complex]. ¹H N.m.r. studies also show that, on addition of 2,2'-bipyridine (bipy) the complex is converted into [PtPh₂(bipy)] without the build up of any

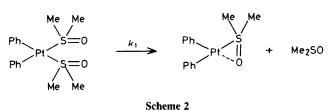
significant concentrations of other Me₂SO-containing species. The rate of release of Me₂SO is consistent with the rate law, $d[Me_2SO]/dt = \{2k_1k_3[bipy]/(k_{-1}[Me_2SO] + k_3[bipy])\}$ [Pt(Ph)₂(Me₂SO)₂], but the flow n.m.r. data are not sufficiently accurate to allow a precise determination of the rate constants.

$$cis-[Pt(Ph)_2(Me_2SO)_2] + L-L \rightarrow [Pt(Ph)_2(L-L)] + 2Me_2SO (1)$$


A spectrophotometric study of reaction (1), [L-L = bipy, 1,10-phenanthroline (phen), and 1,2-(diphenylphosphino)ethane (dppe)] under first-order conditions {[L-L] and $[Me_2SO] \gg [complex]$ } in benzene solution confirmed the above rate law, but in the reaction with the strong nucleophile (dppe) there is an additional dependence on L-L, { $+k_2[L-L]$ }. The rate constants are collected in Table 1, where it will be seen that k_1 is nearly independent of the nature of the entering group whereas the ratio k_3/k_{-1} is very sensitive.

The rate law is consistent with the mechanism shown in Scheme 1, where species 'I' contains only one dimethyl

Table 1. Derived rate constants for the reaction: cis-[PtR₂(Me₂SO)₂] + L-L \rightarrow [PtR₂(L-L)] + 2Me₂SO.


R	L-L	k_1/s^{-1}	k_{3}/k_{-1}	k_2/dm^3 mol ⁻¹ s ⁻¹
Ph	Me ₂ SO ^{a,b} bipv ^a	$0.079 \\ 0.08 \pm 0.02$	0.06 ± 0.02	0.102
	bipyc	0.014	0.049	0
	phenc	0.020	0.26	0
	dppe	0.020	5.6	10
$4 - MeC_6H_4$	bipyc	0.015	0.044	0

^a In CDCl₃ at 300 K, by ¹H n.m.r. ^b Dimethyl sulphoxide exchange. ^c In benzene at 303.2 K, spectrophotometrically.

sulphoxide and no L–L. Although this is the usual rate law for parallel associative solvolysis and direct substitution,⁷ it is unlikely that chloroform or benzene, particularly the latter, is sufficiently nucleophilic to enter at a rate represented by the k_1 pathway and, indeed, insufficiently co-ordinating to occupy a site in the co-ordination shell of the platinum(II). Species 'I' is therefore [Pt(Ph)₂(Me₂SO)]. The experimental evidence points unequivocally to a dissociative mechanism, one of the first to be found in square-planar substitution that is not the result of the suppression of the normal associative pathway.

The intermediate possesses some discriminating ability (as measured by the dependence of k_3/k_{-1} on the nature of L-L), but a factor of only 10² on going from the weakish nitrogen

donor of bipy to the strongly nucleophilic phosphine suggests that the discrimination is not large and indicates a highly reactive intermediate. It is likely that the dissociation is assisted by an anchimeric effect from the oxygen of the remaining sulphoxide, see Scheme 2. We suggest that the strong *trans* influence of the phenyl group is necessary in order to weaken and lengthen the Pt–S bond sufficiently to make the Pt · · · O interaction strong enough. Neither this explanation, nor the alternative, calling for assistance from a β -hydrogen,⁸ can account for the possible occurrence of a similar mode of activation in the reaction between *cis*-[Pt(Me₂S)₂] and the [Pt(Me₂S)₂X₂] isomers in which a methyl group is transferred.⁹

Received, 25th January 1984; Com. 105

References

- 1 M. L. Tobe, 'Inorganic Reaction Mechanisms,' Nelson, London, 1972, p. 48.
- 2 M. Cusumano, P. Marricchi, R. Romeo, V. Ricevuto, and U. Belluco, *Inorg. Chim. Acta*, 1979, 34, 169, and references therein.
- 3 G. Faraone, V. Ricevuto, R. Romeo, and M. Trozzi, *Inorg. Chem.*, 1969, **8**, 2207; F. Basolo, J. Chatt, H. B. Gray, R. G. Pearson, and B. L. Shaw, *J. Chem. Soc.*, 1961, 2207.
- 4 R. Romeo, D. Minniti, and S. Lanza, *Inorg. Chem.*, 1979, 18, 2362, and references therein.
- 5 M. Bonivento, L. Canovese, L. Cattalini, G. Marangoni, G. Michelon, and M. L. Tobe, *Inorg. Chem.*, 1981, **20**, 1493, and references therein; S. Lanza, D. Minniti, R. Romeo, and M. L. Tobe, *Inorg. Chem.*, 1983, **22**, 1235.
- 6 R. Bardi, A. Del Pra, A. M. Piazzesi, and M. Trozzi, Cryst. Struct. Commun., 1981, 10, 301.
- 7 R. Gosling and M. L. Tobe, Inorg. Chem., 1983, 22, 1235.
- 8 G. Alibrandi, D. Minniti, R. Romeo, and P. Vitarelli, *Inorg. Chim. Acta*, 1984, 81, L23.
- 9 J. D. Scott and R. Puddephat, Organometallics, 1983, 2, 1643.