Anomalous Magnetic Property and Capability of Reducing Oxygen to Water of Heat-treated Chloro(tetraphenylporphyrinato)iron(III)

Osamu Ikeda, Hiroshi Fukuda, and Hideo Tamura

Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2–1 Yamadaoka, Suita, Osaka 565, Japan

Heat-treatment of chloro(tetraphenylporphyrinato)iron(III) (CITPPFe^{III}) in an Ar atmosphere gives a product with an anomalously high molar magnetic susceptibility, and on it the cathodic reduction of oxygen occurs through a 4-electron pathway, namely oxygen to water.

Heat-treatment of metallo-macrocycles in an inert atmosphere is of active interest, because it makes the original catalyst a more stable and more active one in the cathodic reduction of oxygen. However, the structures and properties of heat-treated metallo-macrocyles have not yet been fully clarified. The present study shows that the heat-treatment

gives rise to a material with a magnetic characteristic not observed in the unheated material and this magnetic property is strongly correlated to the mechanism for the cathodic reduction of oxygen.

A CITPPFe^{III}-coated disc electrode was prepared by loading 3×10^{-7} mol cm⁻² of CITPPFe^{III} onto the top surface

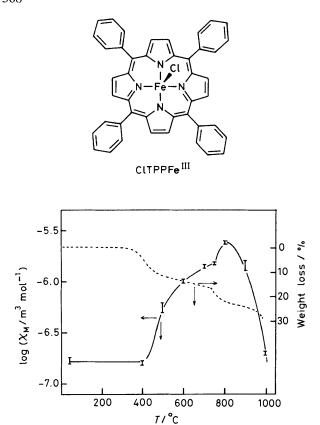
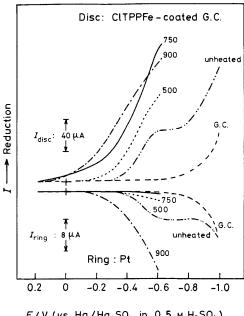



Figure 1. Molar magnetic susceptibility χ_M of CITPPFe^{III} heat-treated at different temperatures (solid line) and thermogravimetric behaviour of CITPPFe^{III} (dotted line).

of a glassy carbon rod (0.28 cm², Tokai Carbon GC 20) and then heating it in an Ar atmosphere at different temperatures. CITPPFe^{III} powder was also heat-treated, and the magnetic properties of the products were investigated.

Figure 1 shows the molar magnetic susceptibility χ_M and the theromogravimetric (TG) behaviour of CITPPFeIII as functions of the temperature of the heat-treatment. The χ_M was evaluated by determining the molecular weight of the porphyrin unit per Fe ion, using $\chi_M = \chi_g \times (\text{molecular weight})$, where χ_g is the mass magnetic susceptibility and is corrected for ferromagnetic impurities by extrapolating the plot of (mass magnetization)/(magnetic field strength) [(M)/(H)] against 1/H to (1/H) = 0. The TG curve was nearly same as that of TPPCo¹¹, ² and two weight loss points were observed (at 430 and 750 °C). In analogy with TPPCoII, thermochemical reactions taking place at 430 and 750 °C seem to be a polymerization owing to a release of phenyl groups and a degradation of the porphyrin skeleton, respectively. ClTPPFeIII heat-treated up to 400 °C shows χ_M of 1.57×10^{-8} m³ mol⁻¹, which is equal to a magnetic moment $\mu_{eff.}$ of 5.5 μ_{B} (Bohr magneton). This value is in good agreement with the value in the literature,3 and indicates that Fe^{III} is high spin in CITPPFe^{III} up to 400 °C. The χ_M of CITPPFe^{III} heated at 700 °C was, however, 1.41×10^{-7} m³ mol^{-1} ($\mu_{eff.} = 16.4 \mu_B$). This value was too high to be explained by a valence change of iron or formation of an oxygen adduct. It may be that the heat-treated ClTPPFeIII has a structure enabling a magnetic interaction among unpaired spins of Fe^{III} in each porphyrin unit. Such a structure might be (i) a co-planar structure with an extended π -electron system

E/V (vs. Hg/Hg₂SO₄ in 0.5 M H₂SO₄)

Figure 2. Voltammograms at the rotating ring-disc electrodes for the cathodic reduction of oxygen in O₂-saturated 0.5 M H₂SO₄. The figures by each line represent the heat-treatment temperature of CITPFe^{III} on the disc. Glassy carbon (G.C.) was used as the base electrode for the disc. Potential of the reference electrode: Hg/Hg₂SO₄ in 0.5 M H₂SO₄, 0.670 V vs. normal hydrogen electrode (NHE). Ring potential, 1.27 V vs. NHE; sweep rate at the disc, 0.1 V s⁻¹; rotation rate, 1000 r.p.m.

(estimated from a sharp X-ray diffraction peak corresponding to the spacing d=0.34 nm), or (ii) a polymer structure bridged by chloride ions among Fe sites in addition to (i). The latter structure (ii) seems to explain the anomalous magnetic behaviour of heat-treated CITPPFe^{III}, because such behaviour was not observed in TPPCo^{II} without an axial ligand.² We are now studying the effect of varying the axial ligand of TPPFe^{III} on the above magnetic behaviour. It was found that F⁻ has a marked effect on the enhancement of $\chi_{\rm M}$ compared to I⁻ and Br⁻.

Figure 2 shows voltammograms at the rotating ring (Pt)—disc(ClTPPFe-coated glassy carbon) electrodes for the cathodic reduction of oxygen in O₂-saturated 0.5 M H₂SO₄. The ring potential was fixed at 0.6 V (vs. Hg/Hg₂SO₄ in 0.5 M H₂SO₄) where the diffusion limiting current was observed for the oxidation of H₂O₂. The voltammograms for unheated ClTPPFe^{III} revealed that the reductants at the disc were a mixture of H₂O₂ (majority) and H₂O. This suggests that the oxygen reduction occurs through both a 2-electron pathway (O₂ to H₂O₂) and a 4-electron pathway (O₂ to H₂O₂) and a 4-electron pathway preferentially. But, ClTPPFe^{III} heat-treated at 500 and 750 °C, however, occurs through a 4-electron pathway preferentially. But, ClTPPFe^{III} heat-treated at 900 °C showed a pronounced H₂O₂ formation again.

The above change in the mechanism of oxygen reduction with heat-treatment temperature nearly corresponds to the change of χ_M in Figure 1. Thus, the increase in χ_M with increasing heat-treatment temperature seems to be correlated to an increased catalytic activity of Fe sites for the cathodic reduction of peroxide species as an intermediate. In fact, the reduction current of H_2O_2 on CITPPFeIII heat treated at

 $750\,^{\circ}\text{C}$ was the highest among the heat-treated ClTPPFe^III coated discs.

Received, 9th December 1983; Com. 1599

References

1 H. Jahnke, M. Schönborn, and G. Zimmerman, Fortschr. Chem. Forsch., 1976, 61, 133; V. S. Bagotzky, M. R. Tarasevich, K. A.

Radyushkina, O. A. Levina, and S. I. Andrusyova, *J. Power Sources*, 1977/78, **2**, 233; K. Wiesener and A. Fuhrmann, *Z. Phys. Chem.* (*Leipzig*), 1976, **261**, 411; J. A. R. van Veen, J. F. van Baar, C. J. Croese, J. G. F. Coolegem, N. de Wit, and H. A. Colijn, *Ber. Bunsenges. Phys. Chem.*, 1981, **85**, 693; J. A. R. van Veen and H. A. Colijn, *ibid.*, p. 700; J. A. R. van Veen, J. F. van Baar, and K. J. Kroese, *J. Chem. Soc.*, *Faraday Trans. 1*, 1981, 77, 2827.

 K. Okabayashi, O. Ikeda, and H. Tamura, Chem. Lett., 1982, 1659.
S. Sullivan, P. Hambright, B. J. Evans, A. Thorpe, and J. Weaver, Arch. Biochem. Biophys., 1970, 137, 51.