Extended Metal–Metal Interactions in Fluorophosphine Complexes of Iridium()

Peter B. Hitchcock, Stephen Morton, and John F. Nixon*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

The solid state structure of $[IrCI(PF_3)_2]_2$ consists of infinite zig-zag chains of iridium atoms with short *inter*- and *intra*-molecular Ir · · · Ir contacts; by contrast related complexes containing PF₂NMe₂ do not appear to have extended metal–metal interactions.

There is considerable current interest in new anisotropic materials with novel solid state properties¹ and most studies of inorganic 'one dimensional metals' have centred on square planar d^8 transition metal complexes particularly those of platinum(II).²

In 1971 Bennett and Patmore³ described the preparation of $[IrCl(PF_3)_2]_2$, (1), and noted that although (1) is pale yellow in solution in the solid state it has a dark colour and metallic lustre possibly indicative of intermetallic bonding. As part of a general study of the potential of d⁸ Rh¹ and Ir¹ metal complexes as 1-D metals we now report the crystal and molecular structure of (1) and some observations on related Ir¹ fluorophosphine complexes.

$$[IrCl(PF_3)_2]_2 (1)$$

$$[IrCl(PF_2NMe_2)_3] (2)$$

$$IrCl(PF_2NMe_2)_2]_2 (3)$$

Crystal data for (1): $Ir_2Cl_2F_{12}P_4$, M = 807.22, monoclinic, space group $P2_1/n$, a = 10.526(1), b = 10.346(2), c = 13.150(1) Å, $\beta = 101.46(1)^\circ$, Z = 4, $D_c = 3.82$ g cm⁻³, Mo- K_{α} radiation ($\lambda = 0.71069$ Å), $\mu = 210$ cm⁻¹, 1604 reflections with $I > 3\sigma(I)$ refined to a conventional R of 0.048.⁺

The molecular geometry of the complex (1) which is shown in Figure 1 confirms the dimeric structure involving chloro bridges. Because of the very strong folding of the $[Ir_2Cl_2]$ four

Figure 1. The molecular structure of $[IrCl(PF_3)_2]_2$ (1): Ir-P (av.) 2.134(5), Ir-Cl (av.) 2.413(5), P-F (av.) 1.517 Å.

membered ring, the two $IrCl_2$ planes meet at an angle of 107.0°, and a short $Ir \cdots Ir$ contact of 2.941(1) Å results. The PF₃ ligands are even more strongly folded back so that the iridium atoms lie 0.20 Å out of the P₂Cl₂ planes. This fold-back occurs in order to minimise *inter*molecular $Cl \cdots F$ contacts and allows an *inter*molecular $Ir \cdots Ir$ contact of 3.271(1) Å to be made. Thus iridium atoms form infinite zig-zag chains with alternate long and short $Ir \cdots Ir$ contacts (Figure 2). These contacts may be compared with the values in $[Ir(CO)_3Cl]$, 2.844(1) Å,⁴ and $[Ir(CO)_2 (acac)]$ (acac = acetylacetonato), 3.20 Å,⁵ which are chain forming or the

⁺ The atomic co-ordinates for this work are available on request from Prof. Dr. G. Bergerhoff, Institut für Anorganische Chemie, Universität, Gerhard-Domagk-Str. 1, D-5300 Bonn 1, W. Germany. Any request should be accompanied by the full literature citation for this communication.

Figure 2. The chain structure of $[IrCl(PF_3)_2]_2$ (1).

racemates of rhodium(I) or iridium(I) dicarbonyl-3trifluoroacetyl camphorate which both have columnar arrays of square planar complexes with short $M \cdots M$ contact (3.38 Å for Rh).⁶ The quasi-racemate formed from the (1*R*) enantiomer of the Ir complex and the (1*S*) enantiomer of the Rh complex has a similar structure⁷ with a RhRhIrIr repeat sequence in which the contact distances Rh \cdots Ir, 3.42(2), Rh \cdots Rh, 3.36(2), and Ir \cdots Ir, 3.36(2) Å, are all slightly larger than the Ir \cdots Ir contact in (1).

The structure of (1) is similar to that of $[RhCl(CO)_2]_2^8$ although the *intra*- and *inter*-molecular Rh · · · Rh contacts (3.12 and 3.31 Å respectively) are much longer and the $[Rh_2Cl_2]$ ring is much less strongly bent. Few neutral monomeric rhodium(1) species are known to form linear chains although $[Rh(CO)_2(acac)]^9$ does and very recently¹⁰ molecular stacking has been reported in $[RhCl(CO)_2pzH]$ (pzH = pyrazole) where in the slightly zig-zag chains of the latter the Rh · · · Rh distance [3.4522(4) Å] is also much longer than the *inter*molecular Ir · · · Ir distance in (1).

Treatment of $[IrCl(C_8H_{14})_2]_2$ (C_8H_{14} = cyclo-octene) with an excess of PF₂NMe₂ results in the formation of $[IrCl(PF_2NMe_2)_3]$ (2), which in contrast to $[RhCl(PF_2NMe_2)_3]^{11}$ gives sharp ¹⁹F{¹H} and ³¹P{¹H} n.m.r. spectra at room temperature indicative of no intermolecular ligand exchange. The spectra clearly indicate a square-planar arrangement of ligands, an iridium with two distinct environments for the ligands and an AA'BX₂X'₂Y₂ spin system‡ (δ_{Pa} -148.5, δ_{Pb} -171.1, δ_{Fx} -55.1, δ_{Fy} -38.4 p.p.m.; ¹J_{PaFa} -1129.6, J_{PbFy} -1057.3, ²J_{PaPa'} + 808.5, ²J_{PaPb} -58.5, ³J_{PaFx'}

[‡] To a good approximation. In fact all the fluorine nuclei are magnetically non-equivalent, but effects of this were not observed.

58.1, ${}^{3}J_{PaFy}$ 7.7, ${}^{3}J_{PbFx}$ -7.1, ${}^{4}J_{FxFx'}$ 8.8, ${}^{4}J_{FxFy}$ ca. 0 Hz). Treatment of a stoicheiometric amount of (2) with [IrCl(C₈H₁₄)₂]₂ affords [IrCl(PF₂NMe₂)₂]₂ (3) which gives an AA'X₂X'₂ spin system‡ in the ${}^{31}P{}^{1}H$ and ${}^{19}F{}^{1}H$ n.m.r. spectra ($\delta_P - 177.8, \delta_F - 43.7 \text{ p.p.m.}; {}^{1}J_{PF} 1072.8, {}^{2}J_{PP'} - 66.6, {}^{3}J_{PF'}, {}^{4}J_{FF'}$ ca. 0 Hz). Both (2) and (3) are pale yellow solids and thus probably contain no significant extended metalmetal interactions. The greater steric requirements of PF₂NMe₂ presumably prevents close approach of the iridium metal centres and thus the formation of extended interactions. We have made similar observations on Rh¹ and Ir¹ fluorophosphite complexes.¹²

We thank the S.E.R.C. for a postdoctoral award (to S. M.) for this work.

Received, 13th February 1984; Com. 197

References

- 'Extended Linear Chain Compounds,' ed. J. S. Miller, Vols. I—III, Plenum, New York, 1982; A. E. Underhill and D. M. Watkins, *Chem. Soc. Rev.*, 1980, 9, No. 4, 429; J. M. Williams and A. J. Schultz, *NATO Conf. Ser.*, 1979, 1, 337; J. S. Miller and A. J. Epstein, *Prog. Inorg. Chem.*, 1976, 20, 1.
- 2 J. M. Williams, Adv. Inorg. Chem. Radiochem., 1983, 26, 235.
- 3 M. A. Bennett and D. J. Patmore, Inorg. Chem., 1971, 10, 2387.
- 4 A. H. Ries, Jr., V. S. Hagley, and S. W. Peterson, J. Am. Chem. Soc., 1977, 99, 4184.
- 5 C. J. Pitt, L. K. Monteith, L. F. Ballard, J. P. Collman, J. C. Morrow, W. R. Roper, and D. Ulkü, *J. Am. Chem. Soc.*, 1966, 88, 4286.
- 6 V. Schurig, Angew. Chem., Int. Ed. Engl., 1981, 20, 807.
- 7 V. Schurig, W. Pille, and W. Winter, Angew. Chem., Int. Ed. Engl., 1983, 22, 327.
- 8 L. F. Dahl, C. Martell, and D. L. Wampler, J. Am. Chem. Soc., 1961, 83, 1761.
- 9 N. A. Bailey, E. Coates, G. B. Robertson, F. Bonati, and R. Ugo, Chem. Commun., 1967, 1041.
- 10 M. J. Decher, D. O. Kimberley Fjeldsted, S. R. Stobart, and M. J. Zaworotko, J. Chem. Soc., Chem. Commun., 1983, 1525.
- 11 D. A. Clement and J. F. Nixon, J. Chem. Soc., Dalton Trans., 1973, 195.
- 12 S. Morton and J. F. Nixon, unpublished results.