Photo-activation of Methane at 12 K by (η^5 -Cyclopentadienyl)- and (η^5 -Pentamethylcyclopentadienyl)-dicarbonyl-rhodium and -iridium Complexes

Antony J. Rest,*a lan Whitwell,a William A. G. Graham,*b James K. Hoyano,b and Alexander D. McMasterb

^a Department of Chemistry, The University, Southampton, SO9 5NH, U.K.

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

I.r. spectroscopic evidence, including ²H labelling, is presented to show that photolysis of $[(\eta^5-C_5R_5)M(CO)_2]$ complexes (M = Rh, R = Me; M = Ir, R = H, Me) in CH₄ matrices at 12 K leads primarily to $[(\eta^5-C_5R_5)M(CO)(H)(Me)]$ species whereas in Ar and N₂ matrices only *small* yields of $[(\eta^5-C_5R_5)M(CO)]$ species are observed.

One of the most important goals in the petrochemicals industry is to find catalysts which will activate saturated hydrocarbons, particularly CH₄, so as to enable their use as feedstocks.¹ The recent discoveries that $[(\eta^5-C_5R_5)Ir(CO)_2]$ complexes [R = H (1), Me (2)] would photochemically activate C-H bonds in CH₄,^{2a} neopentane,^{2b} cyclohexane,^{2b} and benzene,^{2b} and that $[(\eta^5-C_5Me_5)M(PMe_3)H_2] (M = Rh,^3$ Ir⁴) could similarly activate C-H bonds in alkanes have $\begin{array}{ll} [(\eta^{5} - C_{5}R_{5})M(CO)_{2}] & [(\eta^{5} - C_{5}Me_{5})Ir(CO)(H)(Me)] \\ (1) \ M = Ir, \ R = H & (4) \\ (2) \ M = Ir, \ R = Me & \\ (3) \ M = Rh, \ R = Me & \\ \end{array}$

indicated that the goal may be attainable under mild conditions. In the photoreactions the reactive intermediates were presumed to be the 16 electron co-ordinatively unsaturated

Table 1. Observed band positions (cm^{-1}) of $[(\eta^5-C_5R_5)M(CO)_2]$ complexes (1)—(3) and their photoproducts in various matrices at 12 K.

	Matrix			
Complex	$CH_4(CD_4)$	Ar	N_2	CO
(2) ^{a,b}	2020.7(2020.7)	2025.4	2022.9	2020.3
	1954.7(1953.5)	1958.8	1957.0	1954.3
(4) ^{c,d}	2150.1°(1548.8)f			
. ,	1991.5(1990.2)			
$[(\eta^5 - C_5 Me_5) Ir(CO)]^g$	1971.4(1970.5)	1984.2	1989.3	
$[(\eta^5 \cdot C_5 Me_5) Ir(CO)_3]^h$,			2053.5
				1998.6
				1980.5

^a v_{CO} for (3) at 2027.5 and 1964.1 cm⁻¹. ^b v_{CO} for (1) at 2039.9 and 1972.9 cm⁻¹. ^c v_{RhH} for $[(\eta^5-C_5Me_5)Rh(CO)(H)(Me)]$ vvw and not unambiguously assigned and v_{CO} at 2007.7 cm⁻¹. ^d v_{IrH} for $[(\eta^5-C_5H_5)Ir(CO)(H)(Me)]$ at 2174.6 cm⁻¹ and v_{CO} at 2004.7 cm⁻¹. ^e v_{IrH} . ^f v_{IrD} . ^g v_{CO} for $[(\eta^5-C_5Me_5)Rh(CO)]$ and $[(\eta^5-C_5H_5)Ir(CO)]$ at 1981.1 and 1984.0 cm⁻¹, respectively, in CH₄ matrices. ^h v_{CO} for $[(\eta^3-C_5H_5)Co(CO)_3]$ occur at 2075.0 and 2018.0 cm⁻¹; data from ref. 7.

species $[(\eta^{5}-C_{5}R_{5})Ir(L)] (L = CO, R = H, Me;^{2a,2b}L = PMe_{3}, R = Me^{4})$. We describe here a matrix isolation^{5,6} study of $[(\eta^{5}-C_{5}R_{5})M(CO)_{2}]$ complexes [M = Rh, R = Me(3); M = Ir, R = H(1), Me(2)] in which C–H bond activation has been observed even at 12 K. We relate the species formed to the intermediates proposed in solution reactions.

The i.r. spectra of $[(\eta^5 - C_5 R_5)M(CO)_2]$ complexes in various matrices (Table 1) are typified by the spectrum of (2) at high dilution (ca. 1:2000–1:5000) in a pure CH_4 matrix at 12 K [Figure 1(a)]. On irradiation ($290 < \lambda < 370$ and $\lambda > 550$ nm[†]) one new strong terminal CO band appeared (1991.5 cm⁻¹) together with a weak band at 2136.8 cm⁻¹ ('free' CO) and a weak band at 2150.1 cm⁻¹ [Figure 1(b) and (c)]. Further photolysis with higher energy u.v. light ($200 < \lambda < 370$ nm and $\lambda > 550 \text{ nm}$ [‡]) afforded a weak band at 1971.4 cm⁻¹ [Figure 1(e)], but only after a very extended period of photolysis. When the irradiation of (2) was carried out with a pure CD_4 matrix bands at 2136.8 and 1990.2 cm⁻¹ were observed but no weak band was observed at 2150.1 cm⁻¹ [Figure 1(d)]. Instead a weak band was observed at 1548.8 cm⁻¹. The band shift is appropriate for H/D isotope exchange and, therefore, the 2150.1 band in the CH₄ matrix can be assigned to an Ir-H stretching mode. Comparison of the matrix isolation data with that for $[(\eta^5-C_5Me_5)Ir(CO)(H)(Me)]$ (4) in solution (v_{IrH} at 2134vw and v_{CO} at 1990s cm⁻¹ in n-hexane) enables the major matrix product to be identified as (4), i.e., photoactivation of CH₄ has occurred at 12 K.

In contrast with the reactivity of (2) in CH₄ matrices, irradiation for *three* days in Ar and N₂ matrices was required to produce even small yields of photoproducts. In the case of Ar this is perhaps not so surprising since $[(\eta^5-C_5H_5)Co(CO)_2]$ underwent no apparent photoreaction in Ar at 12 K.⁷ The same complex in N₂ matrices was, however, speedily converted into $[(\eta^5-C_5H_5)Co(CO)(N_2)]$.⁷ The positions of the new bands in Ar and N₂ matrices (1984.2 and 1989.3 cm⁻¹, respectively) are consistent with loss of CO from an [M(CO)₂] fragment to form an [M(CO)] species. For example, the terminal CO stretching bands for $[(\eta^5-C_5H_5)Fe-(CO)_2(COMe)]$ are at 2020 and 1960 cm⁻¹ while that for

Figure 1. Infrared spectra (Nicolet 7199 Fourier transform i.r. spectrometer; 1000 scans, 1 cm⁻¹ resolution) from experiments with (2) isolated at high dilution (1:2000–1:5000) in CH₄ [(a)–(c) and (e)] and CD₄ [(d)] matrices at 12 K: (a) after deposition; (b) after 70 h photolysis (290 < λ < 370 nm and λ > 550 nm); (c) subtraction spectrum [(b) – A(a)], where A is a scaling factor; (d) analogous subtraction for experiment using CD₄ matrix; (e) further photolysis of a CH₄ matrix (17 h, 290 < λ < 370 nm and λ > 550 nm). Bands marked * and ‡ are assigned as v_{1rH} and v_{1rD}, respectively.

 $[(\eta^{5}-C_{5}H_{5})Fe(CO)(COMe)]$ occurs at 1948 cm^{-1.8} The minor new matrix species may provisionally be identified as $[(\eta^{5}-C_{5}Me_{5})Ir(CO)].$

In pure CO matrices photolysis leads to new bands at higher wavenumbers (v_{CO} at 2053.5, 1998.6, and 1980.5 cm⁻¹) in a

[†] Quartz gas cell (path length 25 mm) containing Br₂ gas (300 Torr) + Pyrex glass disc (thickness 18 mm).

[‡] Quartz gas cell (path length 25 mm) containing Br₂ gas (300 Torr).

manner analogous to that for $[(\eta^5-C_5H_5)Co(CO)_2]$ in CO matrices. The product in the latter case was assigned as $[(\eta^3-C_5H_5)Co(CO)_3]$,⁷ *i.e.*, ring slippage occurs to give $[(\eta^3-C_5Me_5)Ir(CO)_3]$.§ Additionally in 5% ¹³CO doped Ar matrices (2) undergoes ¹³CO/¹²CO exchange but this process is considerably slower than for $[(\eta^5-C_5H_5)Co(CO)_2]$. Interestingly in 5% ¹³CO doped CH₄ matrices there was no evidence for ¹³CO incorporation into either (2) or (4).¶

Photolysis of (1) and (3) in CH_4 matrices yielded the same band patterns as observed for (2) in CH_4 (Table 1), *i.e.* C-H activation occurs.

The failure to generate more than trace amounts of $[(\eta^5-C_5Me_5)Ir(CO)]$ in Ar and N₂ matrices together with the very slow exchange of bound ¹²CO with ¹³CO doped into matrices suggests that the proposed dissociative C–H activation mechanism *via* 16 electron co-ordinatively unsaturated species $[(\eta^5-C_5R_5)Ir(L)]$ (L = CO, PMe₃; R = H, Me) should be regarded with some scepticism. An alternative mechanism, *i.e. via* a change of ring hapticity $\eta^5-C_5R_5 \rightleftharpoons \eta^3-C_5R_5$ as has been demonstrated for $[(\eta^5-C_5H_5)Co(CO)_2]$, deserves serious consideration. Such a change in ring hapticity affords a site at the metal for the incoming ligand whether an exchanging ¹³CO ligand, a CO affording $[(\eta^3-C_5Me_5)Ir(CO)_3]$, or an interaction with a CH₄ molecule.

The photoactivation of CH_4 at 12 K is the *first* example encountered in matrix isolation studies of metal complexes. It

¶ In a thermal reaction at 298 K in n-hexane, exchange of ¹³CO with (2) proceeded readily (half life ca. one hour).

is interesting to note that the Rh complex (3) activates CH₄ at 12 K. Irradiation of (3) in cyclohexane at 298 K affords $[{(\eta^5-C_5Me_5)Rh(CO)}_2]$,⁹ presumably owing to instability of the primary activation products at this temperature.³

The Southampton group thanks the S.E.R.C. for support (to A. J. R.) and British Gas for a Scholarship (to I. W.). The Edmonton group thanks the Natural Sciences and Engineering Research Council of Canada and the University of Alberta for financial support.

Received, 28th February 1984; Com. 269

References

- J. P. Collman and L. S. Hegedus, 'Principles and Applications of Organotransition Metal Chemistry,' University Science Books, Mill Valley, California, U.S.A., 1980; C. Masters, 'Homogeneous Transition Metal Catalysis,' Chapman and Hall, London, 1981.
- 2 (a) J. K. Hoyano, A. D. McMaster, and W. A. G. Graham, J. Am. Chem. Soc., 1983, 105, 7190; (b) J. K. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3723.
- 3 W. D. Jones and F. J. Feher, Organometallics, 1983, 2, 562.
- 4 A. H. Janowicz and R. G. Bergman, J. Am. Chem. Soc., 1982, 104, 352; 1983, 105, 3929.
- 5 'Matrix Isolation Spectroscopy,' eds. A. J. Barnes, W. J. Orville-Thomas, A. Müller, and R. Gaufrès, NATO ASI Series, D. Reidel, Dordrecht, The Netherlands, 1981.
- 6 R. B. Hitam, K. A. Mahmoud, and A. J. Rest, *Coord. Chem. Rev.*, 1984, in the press.
- 7 O. Crichton, A. J. Rest, and D. J. Taylor, J. Chem. Soc., Dalton Trans., 1980, 167.
- 8 D. J. Fettes, R. Narayanaswamy, and A. J. Rest, J. Chem. Soc., Dalton Trans., 1981, 2311.
- 9 M. Stephenson, unpublished work.

[§] The three band pattern for $[(\eta^3-C_5Me_5)Ir(CO)_3]$ compared with the two band pattern for $[(\eta^3-C_5H_5)Co(CO)_3)]^7$ possibly arises because of the bulky Me groups.