Synthesis and Structural Characterisation of the Heteronuclear Raft Complex [Os₃(CO)₁₁Hg]₃

Mariano Fajardo, H. Diane Holden, Brian F. G. Johnson, Jack Lewis,* and Paul R. Raithby

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

The heteronuclear clusters $[M_3(CO)_{11}Hg]_3$ (M = Ru, Os) have been prepared by the reaction of $[M_3H(CO)_{11}]^-$ with Hg^I and Hg^{II} salts; $[Os_3(CO)_{11}Hg]_3$ has been characterised by an X-ray analysis and shown to contain a raft-like Os_9Hg_3 metal framework.

Reactions of carbonyl clusters of the iron sub-group with triphenylphosphinegold(1) chloride have yielded a variety of mixed-metal cluster complexes exhibiting a range of novel geometries.¹ Similar reactions using mercury(II) or mercury(I) salts might also prove of interest, since species such as ClHg⁺ are isoelectronic with R₃PAu⁺.

In this communication we report the synthesis and characterisation of the heteronuclear cluster compounds $[M_3(CO)_{11}Hg]_3$ (M = Ru, Os), which are obtained by the reaction of $[N(PPh_3)_2][M_3H(CO)_{11}]$ with an equimolar quantity of a mercury(II) or mercury(I) salt, in dry methanol. These compounds are unusual in that they are considered to contain a central M_3Hg_3 planar core, in fact the whole twelve metal atom skeleton may be described as a raft. They represent a hitherto unknown class of heteronuclear cluster.

When salts containing Hg^{II} salts are employed the reaction is simple, leading to the formation of $[M_3(CO)_{11}Hg]_n$ (60% yield) and $[M_3H(CO)_{10}(OH)]$ (30% yield). If Hg^I salts are used the reaction is modified slightly, with Hg₂Cl₂ the reaction is accompanied by the deposition of mercury.

The i.r. spectra of these complexes are relatively simple exhibiting five bands in the carbonyl stretching region. For $[Os_3(CO)_{11}Hg]_3$ the resonances occur at 2109s, 2070vs, 2042vs, 2003m, and 1955m cm⁻¹, in CH₂Cl₂. The simplicity of the spectra reflects the arrangement of the carbonyls in an 'Os₃(CO)₁₁' unit, all these units apparently being equivalent in the molecule. None of the mass spectra for these complexes gave a clear molecular ion. The ¹H n.m.r. spectra did not indicate the presence of hydride ligands. In order to establish the molecular geometry an X-ray analysis of $[Os_3(CO)_{11}Hg]_3$ was undertaken. Orange crystals of the complex were obtained from tetrahydrofuran–CH₂Cl₂ solution.

Crystal data: C₃₃Hg₃O₃₃Os₉, M = 3237.63, triclinic, space group $P\bar{1}$ (no. 2), a = 14.677(9), b = 15.071(9), c = 15.297(8) Å, $\alpha = 71.97(4)$, $\beta = 87.89(5)$, $\gamma = 63.95(4)^{\circ}$, U = 2871.1 Å³, Z = 2, $D_c = 3.74$ g cm⁻³, F(000) = 2778, μ (Mo- K_{α}) = 278.87 cm⁻¹. Intensity data ($2\theta_{max} = 45.0^{\circ}$) were recorded on a Stoe–Siemens four-circle diffractometer using graphite-monochromated Mo- K_{α} radiation and an ω – θ scan technique. The data were corrected for absorption and averaged to give 5356 unique observed reflections $[F > 6\sigma(F)]$. The structure was solved by a combination of direct methods and Fourier difference techniques, and refined by blocked-cascade least squares (Hg and Os anisotropic) to $R = 0.067.^{\dagger}$

The molecular structure of $[Os_3(CO)_{11}Hg]_3$ is shown in Figure 1 together with some important bond parameters. The metal framework consists of a central, approximately equilateral Hg(1)Hg(2)Hg(3) triangle. Each edge of this triangle is symmetrically bridged by an Os atom [Os(1), Os(4), and

Figure 1. The molecular structure of $[Os_3(CO)_{11}Hg]_3$. Bond lengths: Hg(1)-Hg(2), 3.122(3); Hg(1)-Hg(3), 3.082(3); Hg(2)-Hg(3), 3.097(3); Hg(1)-Os(1), 2.763(3); Hg(1)-Os(2), 2.978(3); Hg(1)-Os(4), 2.730(3); Hg(2)-Os(4), 2.755(3); Hg(2)-Os(6), 2.994(3); Hg(2)-Os(7), 2.717(4); Hg(3)-Os(1), 2.719(3); Hg(3)-Os(7), 2.745(4); Hg(3)-Os(8), 3.044(4); Os(1)-Os(2), 3.015(4); Os(1)-Os(3), 2.860(3); Os(2)-Os(3), 2.915(3); Os(4)-Os(5), 2.859(3); Os(4)-Os(6), 3.022(3); Os(5)-Os(6), 2.928(3); Os(7)-Os(8), 3.004(3); Os(7)-Os(9), 2.863(4); Os(8)-Os(9), 2.908(4) Å.

Os(7)] of an Os₃ triangular unit to give a planar (maximum deviation 0.27 Å) Hg₃Os₃ core. A second Os atom [Os(2), Os(6), and Os(8)] is terminally co-ordinated to one of the bridged Hg atoms. The third Os atom [Os(3), Os(5), and Os(9)] in each Os₃ triangle is not involved in bonding with Hg atoms, and the twelve metal atom framework may be described as a raft. The three Os₃ triangles are skewed with respect to the central Hg₃ triangle; the dihedral angles between the Hg(1)Hg(2)Hg(3) plane and Os(1)Os(2)Os(3), Os(4)Os(5)Os(6), and Os(7)Os(8)Os(9) planes are 12.2, 19.1, and 23.5°, respectively. All 33 carbonyl groups are terminal. In each Os₃ triangle, the Os atom which bridges two Hg atoms has three carbonyls bonded to it while the other two Os atoms are each bonded to four. The molecule exhibits idealised three-fold symmetry.

The structure of the central Hg₃Os₃ core is similar to that observed in the planar hexa-osmium cluster $[Os_6(CO)_{17}-{P(OMe)_3}_4]$,² or in the mixed-metal anion $[Fe_3-Pt_3(CO)_{15}]^{2-.3}$

Mercury clusters are rare. The only cluster to have been characterised crystallographically which contains triangular arrangements of Hg atoms is $[Hg_6Rh_4(PMe_3)_{12}]$,⁴ in which Rh atoms cap four tetrahedrally disposed faces of the Hg₆ octahedron. The average Hg–Hg distance in this cluster is 3.142(3) Å which is slightly longer than the average distance

[†] The atomic co-ordinates for this work are available on request from Professor Dr. G. Bergerhoff, Institut für Anorganische Chemie, Universität, Gerhard-Domagk-Strasse 1, D-5300 Bonn 1, West Germany. Any request should be accompanied by the full literature citation for this communication.

of 3.100(6) Å in [Os₃(CO)₁₁Hg]₃. The Hg-Hg distance in the title complex is similar to the value of 3.07 Å for the Hg-Hg separation in the trinuclear complex [Fe(CO)₄(HgBr)₂].⁵ In the observed structure of $[Os_3(CO)_{11}Hg]_3$ there must be a bonding interaction between the formally Hg^{II} atoms in order for the molecule to maintain the discrete twelve metal atom framework. This is despite the fact that the Hg-Hg distances are longer than those in the metal (2.99 Å)⁶ and in a number of Hg-Hg chain complexes.⁷ It is unusual to observe direct bonding between Hgⁱ¹ atoms. In most cases where Hg-Hg bonds have been observed the Hg atoms have been in the 1+ oxidation state7 and the Hg-Hg distances have been significantly shorter than in the title complex. $[Os_3(CO)_{11}Hg]_3$ is formally a 174 electron system, and may be termed electrondeficient since the bonding within the metal framework cannot adequately be described in terms of two-centre bonds.

Hg^{II} has been polymerised previously to give the cluster $[(\eta^5-C_5H_4Me)Mn(CO)_2Hg]_4$,⁸ in which four Hg atoms form a square plane with the substituted Mn atoms bridging the edges. In this complex the Hg–Hg distance is considerably shorter, at 2.888(3) Å, than that observed in $[Os_3(CO)_{11}Hg]_3$.

The distances from the bridging Os atoms to the Hg atoms are significantly shorter [mean 2.74(2) Å] than the distances between the Hg atoms and the non-bridging Os atoms [mean 3.1(1) Å]. The Os–Os bond lengths between the Os atoms involved in bonding to the Hg atoms are long compared to the value observed [2.887(3) Å] in the parent complex $[Os_3(CO)_{12}]$,⁹ but similar to the values observed for a number of hydrido bridged Os–Os bonds.¹⁰ The other two Os–Os bond lengths within each triangle are shorter, the distance between the Os(CO)₃–Os(CO)₄ units being *ca*. 0.06 Å shorter than the distance between the two Os(CO)₄ units.

It is of interest to contrast the production of $[Os_3(CO)_{11}Hg]_3$ with the related reaction involving triphenylphosphinegold(I) chloride. The anion $[Os_3H(CO)_{11}]^-$ reacts with Ph₃PAuCl to give $[Os_3H(CO)_{10}(AuPPh_3)]$ in good yield.¹¹ However, when this cluster is refluxed with a two-fold excess of $[N(PPh_3)_2]Cl$ the dianion $[Os_6Au(CO)_{20}H_2]^{2-}$ is obtained.¹² This dianion contains a central Au atom linking two Os₃ triangles, but there is no evidence for further polymerisation as occurs in the HgOs system.

When $[M_3H(CO)_{11}]^-$ (M = Ru, Os) is treated with Cu^I or Cu^{II} salts, in an analogous manner to the mercury reactions, a complex with the formula $[M_3(CO)_{11}Cu]_n$ (n = unknown) is obtained. With Cu^{II} salts the reaction proceeds cleanly to the above product. With Cu^I salts the initial product is a red

complex $[M_3(CO)_{11}Cu_2]_n$, which in air undergoes further reaction to give the yellow $[M_3(CO)_{11}Cu]_n$ and Cu metal. Although the mono- and di-copper complexes must have different structures their i.r. spectra are very similar, and similar to that of $[Os_3(CO)_{11}Hg]_3$, and must simply reflect the presence of the 'Os₃(CO)₁₁' units in all cases. We thank the S.E.R.C. for financial support and the

We thank the S.E.R.C. for financial support and the Ministerio de Educacion y Ciencia (Spain) for a grant (to M. F.).

Received, 19th September 1983; Com. 1236

References

- B. F. G. Johnson, D. A. Kaner, J. Lewis, P. R. Raithby, and M. J. Rosales, J. Organomet. Chem., 1982, 231, C59; B. F. G. Johnson, D. A. Kaner, J. Lewis, and M. J. Rosales, *ibid.*, 238, C73; L. W. Bateman, M. Green, J. A. K. Howard, K. A. Mead, R. M. Mills, I. D. Slater, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Chem. Commun., 1982, 773; L. J. Farrugia, M. J. Freeman, M. Green, A. G. Orpen, F. G. A. Stone, and I. D. Salter, J. Organomet. Chem., 1983, 249, 273; B. F. G. Johnson, D. A. Kaner, J. Lewis, P. R. Raithby, and M. J. Taylor, Polyhedron, 1982, 1, 105; B. F. G. Johnson, J. Lewis, W. J. H. Nelson, P. R. Raithby, and M. D. Vargas, J. Chem. Soc., Chem. Commun., 1983, 608; B. F. G. Johnson, J. Lewis, W. J. H. Nelson, M. D. Vargas, D. Braga, and M. McPartlin, J. Organomet. Chem., 1983, 246, C69.
- 2 R. J. Goudsmit, B. F. G. Johnson, J. Lewis, P. R. Raithby, and K. H. Whitmire, J. Chem. Soc., Chem. Commun., 1983, 640.
- 3 G. Longoni, M. Manassero, and M. Sansoni, J. Am. Chem. Soc., 1980, 102, 7973.
- 4 R. G. Jones, F. M. Real, G. Wilkinson, A. M. R. Galas, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1981, 126.
- 5 H. W. Baird and L. F. Dahl, J. Organomet. Chem., 1967, 7, 503.
 6 A. Albinati, A. Moor, P. S. Pregosin, and L. M. Venanzi, J. Am. Chem. Soc., 1983, 104, 7672.
- 7 R. D. Ellison, H. A. Levy, and K. W. Fung, *Inorg. Chem.*, 1972, 11, 833; F. Cecconi, C. A. Ghilardi, S. Midallini, and S. Moneti, *J. Chem. Soc.*, *Dalton Trans.*, 1983, 349.
- 8 W. Gade and E. Weiss, Angew. Chem., Int. Ed. Engl., 1981, 20, 803.
- 9 M. R. Churchill and D. G. DeBoer, Inorg. Chem., 1977, 16, 878.
- 10 B. F. G. Johnson, J. Lewis, P. R. Raithby, and C. Zuccaro, J. Chem. Soc., Dalton Trans., 1980, 716; B. F. G. Johnson, J. Lewis, P. R. Raithby, K. Wong, and K. D. Rouse, *ibid.*, p. 1248.
- 11 B. F. G. Johnson, D. A. Kaner, J. Lewis, and P. R. Raithby, J. Organomet. Chem., 1981, 215, C33.
- 12 B. F. G. Johnson, D. A. Kaner, J. Lewis, and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1981, 753.