Quinolizidine Alkaloid Biosynthesis: Incorporation of [1-*amino*-¹⁵N,1-¹³C]Cadaverine into Lupinine

Jatinder Rana and David J. Robins*

Department of Chemistry, University of Glasgow, Glasgow G12 800, U.K.

Two $[1-amino-^{15}N, 1-^{13}C]$ cadaverine (4) units are incorporated into lupinine (5), but only one $^{13}C-^{15}N$ doublet is observed in the $^{13}C{^{1H}}$ n.m.r. spectrum, demonstrating that a later C_5-N-C_5 symmetrical intermediate such as the triamine (7) is not involved in lupinine biosynthesis.

Lupinine (1) is the simplest bicyclic quinolizidine alkaloid.¹ It is known to be formed from lysine (2) *via* cadaverine (3). Thus, two molecules of $[1,5^{-14}C_2]$ cadaverine are incorporated into lupinine (1) with about ¹/₄ of the radioactivity at C-11, and about ¹/₂ at C-(4 + 6).² This labelling pattern is analogous to that obtained for the pyrrolizidine alkaloid retronecine with $[1,4^{-14}C_2]$ putrescine³ and, in more detail, with ¹³C-labelled putrescines.⁴ The use of $[^{13}C^{-15}N]$ doubly labelled putrescine indicated that retronecine is derived from a later C₄–N–C₄ symmetrical intermediate,^{5,6} and this intermediate was shown to be homospermidine (6).^{5,7} We now present evidence that the analogous *N*-(5-aminopentyl)-1,5-diaminopentane (7) is not an intermediate in lupinine biosynthesis.

[1-amino-¹⁵N,1-¹³C]Cadaverine (4) was prepared by treatment of 1-phthalimido-4-bromobutane with K13C15N followed by catalytic hydrogenation and hydrolysis.8 This material as the dihydrochloride (60 mg) together with $[1,5^{-14}C_2]$ cadaverine hydrochloride (5 μ Ci) was pulse fed^{3,4} to eight Lupinus luteus plants. Lupinine was isolated and purified by column chromatography on basic alumina, 25 mg, m.p. 69.5—70 °C (lit., 9 68—69 °C). The 50 MHz $^{13}C{^{1}H}$ n.m.r. spectrum ¹⁰ of labelled lupinine taken in [²H₆]benzene showed four signals with approximately equal enhancement due to the four downfield carbon atoms. The enrichment factors of 1.3, 1.6, 1.4, and 1.5% ¹³C for these signals at 8 57.3, 57.4, 65.2, and 65.5 p.p.m. respectively, were estimated by comparison of the normalised signal integrals in the ${}^{13}C{}^{1}H$ n.m.r. spectrum of lupinine with those of unlabelled material run under the same conditions. The average enrichment factor is 3.0% per C₅ unit of cadaverine, corresponding to a specific ¹³C incorporation of 3.3% (the observed ¹⁴C specific incorporation was 3.9% per C₅ unit).

The ¹³C n.m.r. assignment for the four downfield carbons was made as follows. The signals at δ 65.2 and 65.5 p.p.m. are assigned to C-10 and C-11 respectively on the basis of a distortionless enhancement by polarisation transfer experiment. The resolution enhanced ¹³C{¹H} n.m.r. spectrum of labelled lupinine (Figure 1) contains a doublet at δ 57.3 p.p.m. (J 3.2 Hz) due to ¹³C-¹⁵N species and flanks a signal at natural abundance intensity. The assignment of this signal to C-6 follows from consideration of the ¹³C-¹³C couplings visible in the spectrum due to the presence of some lupinine molecules formed by incorporation of two cadaverine (4) units into the

same molecule of lupinine. The intensity of the doublet at the bridgehead carbon, C-10 (δ 65.2 p.p.m.), is approximately double that of C-11. This indicates that C-10 experiences coupling to both C-11 and the carbon at δ 57.4 p.p.m., which is therefore identified as C-4, since it is impossible for a molecule of lupinine to be labelled with ¹³C at both C-6 and C-10 [see structures (5)].

The crucial observation of a signal due to C-6 at natural abundance intensity (δ 57.3 p.p.m.) flanked by a doublet arising from ¹³C–¹⁵N coupling shows that there is no detectable breakdown of the C–N bond in the cadaverine molecule forming the C-6,N-5 bond in lupinine (**5**). This result, together with the lack of a similar doublet due to ¹³C–¹⁵N coupling associated with C-4, indicate that no later symmetrical intermediate of the type C₅–N–C₅ is involved in lupinine biosynthesis. To examine this point further, *N*-(5-aminopentyl)-1,5-diaminopentane (**7**)¹¹ labelled with ¹⁴C in the terminal carbons was prepared by reaction of benzylamine with two equivalents of [1-¹⁴C]-5-chloropentanenitrile followed by catalytic reduction.¹² The triamine (15 µCi) was pulse fed to nine *L. luteus* plants over 10 days. After a further 10 days, lupinine was extracted and recrystallised to a constant

Figure 1. 50.32 MHz ¹³C{¹H} n.m.r. spectrum of lupinine (5) (24 mg) in $[{}^{2}H_{6}]$ benzene derived from $[1-amino-{}^{15}N, 1-{}^{13}C]$ cadaverine (4) dihydrochloride.

specific ¹⁴C incorporation of 0.04%, suggesting that the triamine (7) is unlikely to be an intermediate in the biosynthesis of lupinine. Furthermore, an intermediate trapping experiment was carried out. (2*S*)-[U-¹⁴C]Lysine (25 μ Ci) was fed to one *L. luteus* plant. After 24 h, the plant was macerated in 0.4 M aqueous trichloroacetic acid containing inactive triamine (7) trihydrochloride (50 mg). The *N*-phenylaminothiocarbonyl derivative was formed with isothiocyanatobenzene, and extracted and purified as described for other polyamines.¹³ Recrystallisation to constant activity gave material containing less than 0.03% of the original radioactivity, indicating that the triamine (7) is not a normal intermediate in lupinine biosynthesis.

We recently showed⁸ that three $[^{13}C^{-15}N]$ cadaverine (4) units are incorporated into the tetracyclic quinolizidine alkaloid sparteine. The presence of two $^{13}C^{-15}N$ doublets in the $^{13}C{}^{1}H$ n.m.r. spectrum of sparteine demonstrated that two of these units are transformed into the outer rings of sparteine in a specific fashion (8). The pattern of incorporation of cadaverine (4) into sparteine (8) and lupinine (5), and the absence of the intermediate (7) in the biosynthesis of lupinine, is consistent with work reported on the conversion of cadaverine into 17-oxosparteine by enzyme preparations from cell suspension cultures of *L. polyphyllus*.¹⁴ During this enzymic conversion, no intermediates were detected, and so a series of enzyme-linked intermediates was proposed. Lupinine (or a close precursor) is presumably liberated from the enzyme complex prior to addition of the third cadaverine unit required for the formation of sparteine.

We are grateful to Dr. D. S. Rycroft (Glasgow) for obtaining the n.m.r. spectra, and we thank the S.E.R.C. for a Research Assistantship (to J. R.).

Received, 7th October 1983; Com. 1327

References

- 'The Alkaloids,' Specialist Periodical Reports, The Royal Society of Chemistry, London, 1971–1983, vols. 1–13.
- 2 M. Souček and H. R. Schütte, Angew. Chem., Int. Ed. Engl., 1962, 1, 597.
- 3 D. J. Robins and J. R. Sweeney, J. Chem. Soc., Perkin Trans. 1, 1981, 3083, and references cited therein.
- 4 H. A. Khan and D. J. Robins, J. Chem. Soc., Chem. Commun., 1981, 146.
- 5 H. A. Khan and D. J. Robins, J. Chem. Soc., Chem. Commun., 1981, 554.
- 6 G. Grue-Sorensen and I. D. Spenser, Can. J. Chem., 1982, 60, 643; J. Am. Chem. Soc., 1981, 103, 3208.
- 7 J. Rana and D. J. Robins, J. Chem. Res. (S), 1983, 146.
- 8 J. Rana and D. J. Robins, J. Chem. Soc., Chem. Commun., 1983, 1335.
- 9 J. F. Couch, J. Am. Chem. Soc., 1934, 56, 2434.
- 10 F. Bohlmann and R. Zeisberg, Chem. Ber., 1975, 108, 1043.
- 11 H. R. Schütte and D. Knöfel, Z. Pflanzenphysiol., 1968, 59, 80.
- 12 R. J. Bergeron, P. S. Burton, K. A. McGovern, and S. J. Kline, Synthesis, 1981, 732.
- 13 B. T. Golding and I. K. Nassereddin, J. Chem. Res., 1981, (S), 342; (M), 3931.
- 14 M. Wink, T. Hartmann, and H.-M. Schiebel, Z. Naturforsch., Teil C, 1979, 34, 704.