Stereoselective γ -cis-Vinylic Metallation of Tertiary Allylic Alcohols

Thérèse Cuvigny, Marc Julia,* and Christian Rolando

Laboratoire de Chimie, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France

Tertiary allylic alcohols are converted by BuⁿLi–tetramethylethylenediamine into the γ -*cis*-vinyl-lithium derivatives which can be alkylated in moderate yields.

Olefins can be metallated in an allylic position and heteroatoms have been shown to have a profound influence on the ease and direction of metallation¹ mainly of aromatic substrates.²

Linalo-ol (1) was treated with BuⁿLi-tetramethylethylenediamine (TMEDA) in hexane and the reaction mixture quenched with D₂O (Scheme 1). ¹H N.m.r. spectroscopy showed that the product was quantitatively and stereoselectively ($J_{1,2} = 11$ Hz), deuteriated in the γ -cis-vinylic position (3; X = D).

There are, to our knowledge, few examples of the substitution by a metal of a vinylic hydrogen in non-activated olefins.³ Stabilisation of the metallation product by intramolecular co-ordination seems reasonable.

The reaction of the intermediate (2) with a variety of electrophiles was investigated : methyl bromide leads to 4,8dimethylnona-2,7-dien-4-ol (3; X = Me) (55% yield; 98% Z, 2% E). The yields with other electrophiles are moderate to fair but stereochemistry is clearly Z (Table 1). The reaction with higher alkyl halides had to be catalysed with transition metal complexes.

The vinyl-lithium intermediate (2) thus appears less reactive than normal vinyl-lithium derivatives. A similar observation has been made with the Z addition product of Grignard

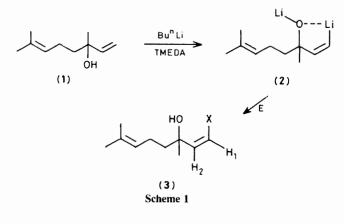


Table 1. Metallation and alkylation of linalo-ol (1).

	•	. ,	
E	\mathbf{X}^{j}	% Yield	$J_{1,2}/\mathrm{Hz}$
D_2O	D	72 ^{a,b}	11
MeBr	Me	55c.a	12
$Me_2CH[CH_2]_2Br$	$Me_2CH[CH_2]_2$	5°	g
		28a.e	
		35a.f	
Me ₃ SiCl	Me ₃ Si	52ª	15.5 ^h
Me ₂ C=O	Me ₂ COH	51ª	13
CO_2	-C(O)-O-i	48ª	7

^a Isolated yield. ^b Deuteriation is quantitative by ¹H n.m.r. or mass spectrometry. ^c G.l.c. yield. ^d 98% Z, 2% E by capillary g.l.c. ^e Catalyst : CoCl₂(PPh₃)₂, 5%. ^f Catalyst : Fe(PhCOCHCOPh)₃, 2%. ^g Could not be determined by ¹H n.m.r. at 250 MHz. ^h In agreement with literature value for silylated compounds (ref. 6). ⁱ Lactone. ^j All new compounds gave analytical results (¹H, ¹³C n.m.r., m.s.) in agreement with their structure.

reagents to prop-2-ynylic alcohols,⁴ the E products being much more reactive.⁵

A similar stereoselective metallation could be observed with dihydrolinalo-ol and *trans*-nerolidol.

The technical skilled assistance of Patrick Mulot and the financial support of C.N.R.S. are gratefully acknowledged.

Received, 1st August 1983; Com. 1042

References

- 1 J. Hartmann, R. Muthukrishnan, and M. Schlosser, *Helv. Chim.* Acta, 1974, 57, 2261.
- 2 H. W. Gschwend and H. R. Rodriguez, Org. React., 1979, 26, 1.
- 3 J. Hartmann and M. Schlosser, Helv. Chim. Acta, 1976, 59, 453.
- 4 J. G. Duboudin, B. Jousseaume, and A. Bonakdar, J. Organomet. Chem., 1979, 168, 227.
- 5 F. Sato, H. Ishikawa, H. Watanabe, T. Miyake, and M. Sato, J. Chem. Soc., Chem. Commun., 1981, 718.
- 6 E. Colvin, 'Silicon in Organic Synthesis,' Butterworths, London, 1981, p. 60.