A Novel Approach to Aminocyclitol Analogues from Azidotrideoxyhex-5enopyranosides

István Pelyvás, Ferenc Sztaricskai, and Rezsó Bognár
Research Group of Antibiotics of the Hungarian Academy of Sciences, Debrecen, H-4010 Hungary

Application of the Ferrier's carbocyclic ring closure to methyl 3-azido-2,3,6-trideoxyhex-5-enopyranosides leads to cyclitol derivatives (3) and (5) suitable for the convenient synthesis of 1,3-diaminocyclitol-type aminoglycoside antibiotic analogues.

In 1979 Ferrier 1 reported the transformation of methyl 3,4-di- O-benzoyl-6-deoxy-2-O-p-tolylsulphonyl- α-D-xylo-hex-5-enopyranoside into $2 \mathrm{~L}-2,4,5 / 3$-2,3-dibenzoyloxy- 5 -hydroxy-4-O-p-tolylsulphonylcyclohexanone, and the reaction was shown to proceed via an intramolecular aldol ring closure in the presence of mercury(ii) chloride.

This procedure for the synthesis of cyclitols from neutral sugars has been applied to the simple conversion of monosaccharides ${ }^{2}$ into cyclohexanones, as well as of disaccharides ${ }^{3}$
into glycosides containing the cyclohexanone aglycone moiety. Thus, the method has opened up new prospects for the total synthesis of aminocyclitol antibiotics.

As no amino- or azido-functionalized di- or tri-deoxyhex-5enopyranosides have been utilized for this transformation, methyl 3-azido-4-O-benzoyl-2,3,6-trideoxy- β-d-erythro-hex5 -enopyranoside (1), ${ }^{4}$ an intermediate in our synthesis ${ }^{4,5}$ of D-ristosamine, was treated with an equimolar amount of HgCl_{2} in hot aqueous acetone for four hours. Instead of the

Table 1. ${ }^{13} \mathrm{C}$ N.m.r. data (50.3 MHz) for compounds (3) and (5).

		Chemical shifts δ (p.p.m.)						
Compound	Solvent	C-1	C-2	C-3	C-4	C-5	C-6	Ester $\mathrm{C}=\mathrm{O}$
(3)	CDCl_{3}	190.3	128.9	132.8	33.7	66.4	46.9	166.0
$(\mathbf{5})$	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$	200.2	81.5	60.7	37.0	65.9	47.5	165.7

(3)

(4)

$$
\mathrm{Bz}=\mathrm{PhCO}
$$

expected 2L-2,3/5-3-azido-2-benzoyloxy-5-hydroxycyclohexanone (2) we isolated the unsaturated 2-benzoyloxy-5-hydroxycyclohex-2-enone (3) $\left\{78 \%\right.$; m.p. $124-125^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}$ $\left.+27.8^{\circ}\left(\mathrm{CHCl}_{3}\right) ; M^{+} 232 ; \delta 6.74(3-\mathrm{H}), 4.75(5-\mathrm{OH})\right\} . \dagger$ During the transformation the $\mathrm{C}-3$ azide and $\mathrm{C}-4$ hydrogen functions of (1), being trans to each other, are presumably eliminated in the form of hydrazoic acid. It is believed that this undesired elimination arises from the above-mentioned steric arrangement.
\dagger All new compounds gave satisfactory elemental analyses and were adequately identified by i.r., ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r., and mass spectral analyses.

This latter assumption is strongly supported by the observation that no such elimination occurs under similar conditions in the case of the α-d-threo isomer (4) ${ }^{6}$ of (1), in which the $3-\mathrm{N}_{3}$ and $4-\mathrm{H}$ groups are cis; instead the product was 2L-2,5/3-2-O-benzoyl-3-azido-5-hydroxycyclohexanone (5) $\left\{82 \%\right.$; m.p. $182-183^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-126.6^{\circ}\left(\mathrm{CHCl}_{3}\right) ; M^{+} 275 ; \delta$ $4.45(5-\mathrm{OH})\}$. \ddagger

Compound (5), containing both functions needed for the conversion into a 1,3-diaminocyclitol analogue, seems to be an appropriate material for the chemical and muta-synthesis of novel aminocyclitol antibiotic derivatives.

We thank Dr. László Szilágyi and Dr. Zoltán Dinya for the n.m.r. and mass spectra.

Received, 10th October 1983; Com. 1332

References

1 R. J. Ferrier, J. Chem. Soc., Perkin Trans. 1, 1979, 1455.
2 D. Semeria, M. Philippe, J.-M. Delaumney, A.-M. Sepulchre, and S. D. Gero, Synthesis, 1983, 710; I. Pintér, J. Kovács, and A. Messmer, Carbohydr. Res., 1983, 116, 156.
3 R. Blattner, R. J. Ferrier, and P. Prasit, J. Chem. Soc., Chem. Commun., 1980, 944; F. Sugawara and H. Kuzuhara, Agric. Biol. Chem., 1981, 45, 301.
4 I. Pelyvás, F. Sztaricskai, L. Szilágyi, R. Bognár, and J. Tamás, Carbohydr. Res., 1979, 68, 321.
5 I. Pelyvás, F. Sztaricskai, L. Szilágyi, R. Bognár, and J. Tamás, Carbohydr. Res., 1979, 76, 79.
6 T.-M. Cheung, D. Horton, R. J. Sorenson, and W. Weckerle, Carbohydr. Res., 1978, 63, 77.

[^0]
[^0]: $\ddagger^{1} \mathrm{H}$ N.m.r. ($200 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone $)$ coupling constants $[J(\mathrm{H}, \mathrm{H})$, Hz] for compound (5): $(2,3) 10.7$, $(3,4 \mathrm{e}) 4.5,(3,4 \mathrm{a}) 11.0,(4 \mathrm{e}, 5) 5.0$, $(4 \mathrm{a}, 5) 2.0,(5,6 \mathrm{e}) 3.0,(5,6 \mathrm{a}) 4.0$, $(4 \mathrm{e}, 6 \mathrm{e}) 2.5$.

