Determination of Subtle Differences in π -Acceptor Ability of Ethynyl, Cyano, and Phenylethynyl Groups using the Cycloheptatriene–Norcaradiene Equilibrium in 7-Substituted 2,5-Di-t-butylcyclohepta-1,3,5-trienes¹

Ken'ichi Takeuchi, Yoshihide Senzaki, and Kunio Okamoto*

Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan

The equilibrium constant {K = [norcaradiene]/[cycloheptatriene]} determined by ¹H n.m.r. spectroscopy of the title system with the substituent in the *exo* or equatorial position are 0.213 ± 0.002, 0.258 ± 0.002, and 0.374 ± 0.004 for ethynyl, cyano, and phenylethynyl, respectively, in CS₂–CD₂Cl₂ (3 : 1 v/v) at –120 °C, which indicate an increasing π -acceptor ability towards the cyclopropane ring which follows this order of the substituents.

Orbital theory suggests that the cyclopropane ring behaves as an electron donor towards π -acceptor substituents, which causes a shortening of the C(2)-C(3) bond and lengthening of the C(1)-C(2) and C(1)-C(3) bonds.² This has been supported by X-ray³ and microwave⁴ studies. However, the detection of a subtle difference in the π -acceptor abilities of different Z groups appears to be difficult in geometric studies because of inherent experimental uncertainties. A recent microwave study on cyclopropanecarbonitrile and cyclopropylacetylene showed that in the former the C(2)–C(3) bond was shorter by 0.002 Å and the C(1)–C(2) bond longer by 0.003 Å than the corresponding bonds in the latter.⁴ Although the results were in accord with the prediction that the cyano group would be a better acceptor than the ethynyl group, the experimental uncertainties (0.003-0.007 Å) were too large to provide definite proof.4

On the other hand, the equilibrium constants (or ΔH° values) for the valence tautomerism between 7-substituted cyclohepta-1,3,5-trienes (CHT's) and bicyclo[4.1.0]hepta-2,4-dienes (norcaradienes; NCD's) can be determined by variable-temperature ¹H n.m.r. spectroscopy with good precision and permit the evaluation of the relative π -acceptor abilities of the substituents.^{5.6} As the acceptor ability increases, the position of equilibrium shifts to the NCD side.

We have previously succeeded in determining the populations of the four tautomers of 7-cyano-2,5-di-tbutylcyclohepta-1,3,5-triene (1) by ¹H n.m.r. spectroscopy at $-120 \,^{\circ}$ C [equation (1)] (eq = equatorial, ax = axial),⁷ although without the t-butyl groups no NCD tautomers have been detected.^{5a,8} We now report the CHT–NCD equilibrium constants for 7-ethynyl- and 7-(phenylethynyl)-2,5-di-t-

 $Z = \pi$ -acceptor substituent

butylcyclohepta-1,3,5-trienes (2) and (3), respectively, with the substituent in the *eq* or *exo* position, at -120 °C in CS₂-CD₂Cl₂(3:1 v/v). Comparison of the data with the value for (1) provides the first definite determination of subtle differences among the relative π -acceptor abilities of the three Z groups.

The compounds (2) (unstable liquids) and (3) (m.p. 74.0—76.0 °C) were prepared in *ca*. 17% yield by treatment of 1,4-di-t-butyltropylium perchlorate⁹ with ethynyl- and phenylethynyl-lithium, respectively, in tetrahydrofuran at -30 °C, followed by separation from other isomers by h.p.l.c. (Waters µ-Porasil column; hexane); satisfactory elemental analyses were obtained. The ¹H n.m.r. data are summarized in Table 1. The assignments of signals are based on the previously reported spectra of (1).⁷ The coalesced signals at 24 °C split at low temperatures into two major ones assigned to *exo*-NCD [(2-*exo*) or (3-*exo*)] and *eq*-CHT [(2-*eq*) or (3-*eq*)]. Existence of *endo*-NCD [(2-*endo*) or (3-*endo*)] was indicated by the weak singlet of H(3,4) at δ *ca*. 5.7. No signals for H(7) of (2-*ax*) or (3-*ax*) were observed in the range of δ 2.5—5.2.

In the two pairs of structures in the CHT– \dot{N} CD equilibrium [equation (1)], the equilibrium between the *ax* and *endo* tautomer is markedly affected by the through-space interactions of the substituent on C(7) with C(3) and C(4), whereas

Table 1, 99.55 MHz ¹ H Fourier transform n.m.	data for (2) and (3) in CS	$-CD_2Cl_2(3:1 v/v), [(2)]$	$= 0.090 \text{ M}; \{(3)\} = 0.15 \text{ M};$
Tuble II 99.55 MILL II Found dunstorin million	· dutu for (2) und (5) m eo		0.050 M, (0) 0.15 M.

		Chemical shift (δ)				I (-I)	Deputation /9/ b
Temp./°C	Tautomer	H(1,6)	H(3,4)	H(7)	But	$J_{1,7} (= J_{6,7})$ /Hz	$at - 120 ^{\circ}\mathrm{C}$
24 -120 -120 -120	(2)° (2-exo) (2-eq) ^d (2-endo)	$\begin{array}{c} 4.36(d) \\ 2.18(d) \\ 5.20(d) \\ -g \end{array}$	6.40(s) 5.50(s) 6.75(s) 5.69(s)	$ \begin{array}{c} 1.84(dt)^{e} \\ 0.27(br.) \\ 2.2(br.)^{f} \\ -g \end{array} $	$ \begin{array}{r} 1.08(s) \\ 1.14(s) \\ 1.06(s) \\g \end{array} $	5.7 3.9 5.7 	
24 -120 -120 -120	(3)° (3-exo) (3-eq) ^d (3-endo)	$\begin{array}{c} 4.32(d) \\ 2.33(d) \\ 5.30(d) \\\underline{g} \end{array}$	6.38(s) 5.53(s) 6.78(s) 5.76(s)	$2.00(t) \\ 0.50(t) \\ 2.47(t) \\$	$ \begin{array}{c} 1.11(s) \\ 1.15(s) \\ 1.09(s) \\g \end{array} $	5.7 3.9 5.7 —g	$26.4 \pm 0.2 \\70.6 \pm 0.2 \\3.0 \pm 0.1$

^a Aryl and ethynyl protons are not shown. ^b Determined by the integration of H(3,4) signals. ^c All signals are coalesced. ^d The axial tautomer has not been detected (<1%). ^e J with ethynyl proton is 2.3 Hz. ^f Overlapped with the H(1,6) signal of (2-exo). ^g The signal could not be detected because of low intensity or overlapping with other signals.

the equilibrium between the eq and the exo tautomer is free from such steric factors.^{5,7,8b} Therefore, for evaluating the relative π -acceptor abilities of the substituents, the equilibrium constants between the eq-CHT and the exo-NCD tautomers should be employed.⁺⁵ The populations in Table 1, which were determined by integrating the H(3,4) signals, afford [(2-exo)]/[(2-eq)] = 0.213 \pm 0.002 and [(3-exo)]/[(3-eq)] = 0.374 \pm 0.004 at -120 °C. Carefully repeated integrations of the spectrum of (1) measured under the same conditions afforded [(1-exo)]/[(1-eq)] = 0.258 \pm 0.002.[‡] Consequently, the π -acceptor ability increases in the order: ethynyl < cyano < phenylethynyl. Thus, the present system [equation (1)] is a

 \ddagger For the ¹H n.m.r. data see ref. 7. Newly determined populations are 15.8 \pm 0.1 (1-exo), 61.1 \pm 0.1 (1-eq), 2.1 \pm 0.1 (1-ax), and 21.0 \pm 0.1% (1-endo).

promising tool for evaluating the relative π -acceptor abilities of various substituents.

Received, 24th October 1983; Com. 1399

References

- 1 For Part 5 of the series 'Structural Effects on Valence Tautomerism,' see K. Takeuchi, H. Fujimoto, T. Kitagawa, H. Fujii, and K. Okamoto, J. Chem. Soc., Perkin Trans. 2, in the press.
- 2 R. Hoffmann, Tetrahedron Lett., 1970, 2907; H. Günther, ibid., p. 5173.
- 3 F. H. Allen, Acta Crystallogr., Sect. B, 1980, **36**, 81; F. H. Allen, O. Kennard, and R. Taylor, Acc. Chem. Res., 1983, **16**, 146.
- 4 M. D. Harmony, R. N. Nandi, J. V. Tietz, J.-I. Choe, S. J. Getty, and S. W. Staley, J. Am. Chem. Soc., 1983, 105, 3947.
- 5 (a) R. Wehner and H. Günther, J. Am. Chem. Soc., 1975, 97, 923;
 (b) M. Balci, H. Fischer, and H. Günther, Angew. Chem., 1980, 92, 316.
- 6 K. Takeuchi, H. Fuimoto, and K. Okamoto, Tetrahedron Lett., 1981, 22, 3081.
- 7 K. Takeuchi, T. Kitagawa, Y. Senzaki, H. Fujimoto, and K. Okamoto, *Chem. Lett.*, 1983, 69.
- 8 (a) C. H. Bushweller, M. Sharpe, and S. J. Weininger, *Tetrahedron Lett.*, 1970, 453; (b) K. Takeuchi, T. Kitagawa, Y. Senzaki, and K. Okamoto, *Chem. Lett.*, 1983, 73.
- 9 K. Komatsu, K. Takeuchi, M. Arima, Y. Waki, S. Shirai, and K. Okamoto, Bull. Chem. Soc. Jpn., 1982, 55, 3257.

[†] For strict comparisons, ΔH° values should be determined. However, (1)–(3) contain substituents of similar cylindrical shape and would show similar ΔS° values, which permits the use of the equilibrium constants at low temperatures as a measure of the π -acceptor ability.