112

The Role of Saturated Transition Metal Carbonyl Complexes as π -Acid Ligands; a Theoretical Investigation of the Bonding in $[Cr(\mu-CO)_2(CO)(\eta-C_6H_6)Rh(CO)(\eta-C_5Me_5)]$ and $[Co(\mu-CO)_2(\eta-C_5H_5)Rh(PH_3)(\eta-C_5H_5)]$

Robert D. Barr, Todd B. Marder, † A. Guy Orpen, and Ian D. Williams†

Department of Inorganic Chemistry, The University of Bristol, Bristol BS8 1TS, U.K.

E.H.M.O. Calculations on $[Cr(\mu-CO)_2(CO)(\eta-C_6H_6)Rh(CO)(\eta-C_5Me_5)]$ and $[Co(\mu-CO)_2(\eta-C_5H_5)Rh(PH_3)(\eta-C_5H_5)]$ indicate that the saturated $[Cr(CO)_3(\eta-C_6H_6)]$ and $[Co(CO)_2(\eta-C_5H_5)]$ moieties are excellent π -acid ligands for the electron-rich $[Rh(L)(\eta-C_5R_5)]$ fragments; bonding takes place through the semi-bridging carbonyls with little net metal-metal interaction.

The metal-metal donor-acceptor bond formalism has recently been invoked in simple valence-bond descriptions of bimetallic transition-metal complexes for which the electron count at the two metal centres would otherwise be unequal.^{1–3} Many of these species^{1,2} possess a pair of non-compensating semi-bridging carbonyl ligands.¹ Because alternative representations of the bonding in these compounds have appeared [*viz.* (A).⁴ (B),^{2b} and (C)^{2c}], we felt that a theoretical investigation was necessary to elucidate their electronic structure. Presented here are the results of E.H.M.O. calculations⁵ on two members of this class; [Cr(μ -CO)₂(CO)(η -C₆H₆)Rh(CO)(η -C₅Me₅)] (1),^{2e} and [Co(μ -CO)₂(η -C₅He₅)Rh(PH₃)(η -C₅Me₅)] (2), a model for [Co(μ -CO)₂(η -C₅Me₅)Rh(PM₂Ph)(η -C₅Me₅)] (3).⁶ Geometrical parameters for (1) and (2) were taken from the crystal structures of (1)^{2e} and (3).⁶ A fragment analytical approach was employed in which the complexes were partitioned such that the semi-bridging carbonyl groups were attached to the metal to which they show a greater degree of terminal character.‡ Cleavage of (1) and (2) in this fashion yields a co-ordinatively unsaturated 16 electron [RhL(η -C₅R₅)] moiety in each case and a saturated 18 electron species namely [Cr(CO)₃(η -C₆H₆)] for (1) and [Co(CO)₂(η -C₅H₅)] for (2). The frontier orbitals of (1) and its fragments (4) and (5) are depicted in Figure 1. These are classified according to the symmetry of (1) (C₅) and furthermore as having σ , π , or δ pseudo-symmetry with respect to the metal–metal axis.

The frontier orbitals of the d⁸ rhodium(1) fragment $[Rh(CO)(\eta-C_5Me_5)]$ (4) are qualitatively similar to those described by Hofmann⁷ for $[Rh(CO)(\eta-C_5H_5)]$. They consist of three low lying metal based orbitals $[1a''(\pi), 1a'(\pi), and 2a'(\sigma)]$ and a filled π -donor orbital, $2a''(\pi)$, at higher energy, which is the HOMO for the fragment. The LUMO $3a'(\sigma)$ is well separated from the other virtual orbitals and is a potential σ -acceptor.

[†] Present addresses: T. B. M., E. I. DuPont DeNemours and Co. Inc., Central Research and Development Department, Experimental Station, Wilmington, Delaware 19898, U.S.A. I. D. W., Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

[‡] Evidence for the degree of terminal character is derived from structural and spectroscopic studies on (1), (3), and related molecules.

 Table 1. Fractional fragment orbital occupancies for (1).

Fragment (4)		Fragment (5)	
3a'	0.20		
2a″	0.66	2a″	0.43
2a'	0.94	2a'	0.94
1a'	0.96	1a′	0.94
1a″	0.92	1a″	1.00

The d⁶-[Cr(CO)₃(η -C₆H₆)] moiety, (**5**), has three filled metal based orbitals [1a"(δ), 1a'(π), and 2a'(σ)]. These are similar in energy and lie well below the 2a"(π) LUMO. This LUMO is principally composed of the in-plane μ -CO π^* orbitals which are heavily localised on the carbon atoms. The perturbation of the geometry of fragment (**5**) from its ground state⁸ upon co-ordination to (**4**) parallels that of alkenes⁹ in that rehybridisation occurs to produce a more efficient π -acceptor function.

The important interactions between the fragments (4) and (5) which comprise molecule (1) are shown in Figure 1. The dominant interaction is between the two 2a"(π) orbitals, the HOMO of (4) is perfectly hybridised to overlap with the μ -C(O) based LUMO of (5). There is a net charge transfer of *ca*. 0.7 electrons from (4) to (5), which is largely due to this interaction as reflected in the fractional orbital occupancies of 0.66 for 2a"(π) of (4) and 0.43 for 2a"(π) of (5) (see Table 1). Here we have a demonstration of the π -acid capabilities of fragment (5) (the relatively accessible LUMO) and the electron rich nature of (4) (the high lying HOMO). The semi-bridging nature of the μ -CO ligands in (1) is reflected in the atomic overlap population for Cr- μ -C(O) and Rh- μ -C(O) of 0.80 and 0.37, respectively [*cf*. Cr-C(O) terminal = 1.00 and Rh-C(O) terminal = 1.01]. In comparison, other interactions between the fragments are minor.

Whilst there is some charge transfer in the other direction from (5) to (4) by interaction of $2a'(\sigma)$ with $3a'(\sigma)$ of (4) (the in-phase combination constitutes the metal-metal 'donoracceptor' bond) this merely serves to offset the two destabilising 4e⁻ $a'(\sigma)$ and $a'(\pi)$ interactions. As the $a''(\delta)$ interaction is also of minor importance, we find *no significant net metalmetal bond*; the Cr–Rh atomic overlap population is only 0.03. The Cr–Rh distance of 2.757(2) Å found in the X-ray study^{2c} is therefore not a sufficient criterion on which to assess the degree of direct metal-metal bonding. Similar conclusions have been reached by others in their theoretical¹⁰ and experimental¹¹ studies of binuclear complexes containing symmetrical carbonyl bridges.

The analysis for (2) shows a qualitatively similar bonding pattern. The principal interaction between the two fragments

Figure 1. Molecular orbital interaction diagram for compound (1). The orbitals for the fragment $[Rh(CO)(\eta-C_5Me_5)]$ are depicted at the left and for the fragment $[Cr(CO)_3(\eta-C_6H_6)]$ at the right of the figure.

is that of the high-energy π -donor orbital on [Rh(PH₃)(η -C₅H₅)] with the π -acceptor function of the [Co(CO)₂(η -C₅H₅)] analogous to 2a"(π) of (5). The in-phase combination of these two does not, however, constitute the molecular HOMO in (2); the two highest filled levels in (2) are reversed in order compared with (1). Thus the HOMO of (2) consists of the out-of-phase a'(π) interaction.

A bonding scheme for this class of compound thus emerges. The major interaction is the stabilisation of the high-lying filled π -donor on the unsaturated fragment by the out-of-phase combination of the in-plane π^* orbitals of the η -CO ligands.§ Although orbitals of appropriate symmetry for $M \rightarrow M$ bonding exist, other unfavourable M-M interactions counterbalance this producing a net bond order close to 0 between the metal atoms.

Moving the metal centres closer to each other would be expected to result in stabilisation of the in-phase a' (π) interaction and concomitant destabilisation of the corresponding out-of-phase combination, to the extent that the latter may become the HOMO [as in (2) which has a Co–Rh internuclear separation of 2.587(1) Å, from (3)⁶]. Removal of a pair of

[§] Certain molecules related to (2) have a different ground-state geometry in which there is one terminal and one bridging carbonyl ligand, *e.g.* [Rh₂(µ-CO)(CO){P(OPh)₃}(η -C₅H₅)₂] (6) (ref. 12). We suggest that the [Rh{P(OPh)₃}(η -C₅H₅)] fragment is not sufficiently electron rich to warrant the π -back bonding interaction. Interconversion between these two structural types constitutes a viable mechanism for CO site exchange in (6) (ref. 12) and related molecules (ref. 13).

$$[Co(\mu-CO)_{2}(\eta-C_{5}H_{5})Rh(PH_{3})(\eta-C_{5}H_{5})]$$
(2)
$$[Co(\mu-CO)_{2}(\eta-C_{5}Me_{5})Rh(PMe_{2}Ph)(\eta-C_{5}Me_{5})]$$
(3)

$$[Rh_{2}(\mu-CO)(CO)\{P(OPh)_{3}\}(\eta-C_{5}H_{5})_{2}]$$
(6)

electrons in such a case should result in a net M–M bond. Calculations on other molecules for which $M \rightarrow M$ dative interactions have been postulated {*e.g.* the unsupported osmium dimer, [Os(CO)₅Os(CO)₃(GeCl₃)Cl],^{3a} and [Mo(μ -CO)₂(CO)(η -C₅H₅)Rh(PPh₃)₂]¹⁴} will be reported elsewhere.

We thank the S.E.R.C. for support, I.C.I. New Science Group for a C.A.S.E. research studentship (R. D. B.), and Professor R. Bergman for a preprint of ref. 4.

Received, 13th October 1983; Com. 1358

References

- 1 F. A. Cotton, Prog. Inorg. Chem., 1976, 21, 1, and references therein.
- (a) H. Hersh and R. G. Bergman, J. Am. Chem. Soc., 1981, 103, 6992;
 (b) H. Werner and B. Klingert, J. Organomet. Chem., 1982, 233, 365;
 (c) H. Werner, O. Kolb, U. Schubert, and K. Ackermann, *ibid.*, 240, 721;
 (d) M. L. Aldridge, M. Green, J. A. K. Howard, G. N. Pain, S. J. Porter, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans., 1982, 1133;

- R. D. Barr, M. Green, K. Marsden, F. G. A. Stone, and P. Woodward, *ibid.*, 1983, 507; (f) F. Farone, G. Bruno, S. Lo. Schiavo, P. Pirano, and G. Bombieri, *ibid.*, p. 1819; (g) R. I. Mink, J. J. Welter, P. R. Young, and G. D. Stucky, *J. Am. Chem. Soc.*, 1979, **101**, 6928; (h) H. B. Chin, M. B. Smith, R. D. Wilson, and R. Bau, *ibid.*, 1974, **96**, 5285.
- 3 (a) F. W. B. Einstein, R. K. Pomeroy, P. Rushman, and A. C. Willis, J. Chem. Soc., Chem. Commun., 1983, 854; (b) M. P. Brown, S. J. Cooper, A. A. Frew, L. Manojlović-Muir, K. W. Muir, R. J. Puddephatt, K. R. Seddon, and M. A. Thomson, *Inorg. Chem.*, 1981, **20**, 1500; (c) M. C. Grossel, R. P. Moulding, and K. R. Seddon, J. Organomet. Chem., 1983, **247**, C32.
- 4 W. J. Hersh, F. J. Hollander, and R. G. Bergman, J. Am. Chem. Soc., 1983, 105, 5834.
- 5 Program ICON 8: J. Howell, A. Rossi, D. Wallace, K. Haraki, and R. Hoffmann, *Quantum Chemistry Program Exchange*, 1977, **10**, 344.
- 6 R. D. Barr, M. Green, J. A. K. Howard, T. B. Marder, F. G. A. Stone, personal communication.
- 7 P. Hofmann, Angew. Chem., Int. Ed. Engl., 1979, 18, 554.
- 8 T. A. Albright, P. Hofmann, and R. Hoffmann, J. Am. Chem. Soc., 1977, 99, 7546.
- 9 T. A. Albright, *Tetrahedron*, 1982, **38**, 1339, and references therein.
- 10 (a) M. Bernard, *Inorg. Chem.*, 1979, 18, 2782; (b) A. R. Pinhas, T. A. Albright, P. Hofmann, and R. Hoffmann, *Helv. Chim. Acta*, 1980, 63 29, and references therein.
- 11 A. Mitchler, B. Rees, and M. S. Lehman, J. Am. Chem. Soc., 1978, 100, 3390.
- 12 J. Evans, B. F. G. Johnson, J. Lewis, T. W. Matheson, and J. R. Norton, J. Chem. Soc., Dalton Trans., 1978, 626.
- 13 L. N. Lewis and K. G. Caulton, Inorg. Chem., 1981, 20, 1139.
- 14 L. Carlton, W. E. Lindsell, K. J. McCullogh, and P. N. Preston, J. Chem. Soc., Chem. Commun., 1982, 1001.