A New Synthesis of α -Methylene Lactones

Alistair W. Murray* and Robert G. Reid

Department of Chemistry, University of Dundee, Dundee DD1 4HN, Scotland, U.K.

The α -formylation of γ - and δ -lactones and the high yield conversion into their respective α -methylene γ - and δ -lactones are described.

The α -methylene- γ -butyrolactone structural unit is a structural feature common to a large number of biologically important sesquiterpenes and the development of synthetic routes to this entity has commanded considerable attention.¹ However, many of the methods used have the disadvantage of either low yields or being multi-step, and often a further drawback has been their inapplicability to δ -lactones.² Herein we report a novel two-step reaction sequence for the insertion of an α -methylene or substituted α -methylene unit into either γ -butyrolactone or δ -valerolactone, which proceeds in uniformly high yield.

The α -methylene function can be introduced in two quite simple steps (Scheme 1); formylation³ of the parent lactone to give the sodium salt of the α -formyl lactone (1) in 100% yield,

Scheme 1. n = 1 or 2.

followed by refluxing the latter under nitrogen, with an aldehyde, for periods varying from 3 to 18 h (see Table 1). Work-up of the α -methylene lactones (2) was accomplished by filtration, removal of the solvent under reduced pressure, and passage of the resulting solution through a Kieselgel pad, with dichloromethane as solvent. The substituted methylene lactones were purified by removal of the solvent under reduced pressure, addition of 6 M hydrochloric acid, and extraction with diethyl ether. Final purification was accomplished by either distillation or recrystallisation.

The reaction with benzaldehyde and propionaldehyde resulted in the formation of a mixture of the corresponding α -*trans*- and α -*cis*-(substituted ylidene)- γ -butyrolactones. Although separation of the individual isomers proved impossible, their relative ratio could be determined by ¹H n.m.r. data. The olefinic proton of the α -*trans*-benzylidene- γ -

Table 1. Preparation of α -methylene lactones (2).

Compound (2) ^a			Reaction	Ratio	
n	R	Solvent ^b	time	trans : cis	% Yield
1	Н	THF	3 h		98
1	Ph	THF + HMPA	18 h	3:1	67
1	Et	Dioxane + HMPA	18 h	1.7:1	81
2	Н	THF	18 h		80

^a All compounds gave satisfactory microanalytical and spectral data. ^b THF = tetrahydrofuran, HMPA = hexamethylphosphoramide [2 equiv. of HMPA with respect to (1)].

butyrolactone resonates as a triplet at δ 7.40 compared with the corresponding *cis* isomer where the olefinic proton appears as a triplet at δ 7.20. The olefinic proton of the α -*trans*-ethylidene- γ -butyrolactone resonates at δ 6.56 as a triple triplet, while the corresponding *cis* isomer shows a triple triplet at δ 6.13. The reaction scheme may be best explained by formyl transfer from carbon to oxygen followed by elimination of carboxylate anion,⁴ as outlined in Scheme 2.

Received, 24th October 1983; Com. 1390

References

- 1 P. A. Grieco, Synthesis, 1975, 67; R. B. Gammill, C. A. Wilson, and T. A. Bryson, Synth. Commun., 1975, 5, 245.
- 2 J. Martin, P. C. Watts, and F. Johnson, *Chem. Commun.*, 1970, 27;
 E. S. Behare and R. B. Miller, *ibid.*, 1970, 402; J. W. Patterson and
 J. E. McMurry, *ibid.*, 1971, 488.
- 3 C. R. Hutchinson, J. Org. Chem., 1974, 39, 1854.
- 4 Y. Uneno, H. Setoi, and M. Okawara, Tetrahedron Lett., 1978, 3753.