C–C Bond Formation and C–H Bond Cleavage in Redox Reactions of Ruthenium Complexes

David R. Saunders and Roger J. Mawby*

Department of Chemistry, University of York, York Y01 5DD, U.K.

Complexes [Ru(CO)₂R¹R²(PMe₂Ph)₂] decompose intramolecularly in CHCl₃ to yield ketones R¹R²CO; the complex

 $[Ru(CO)_2(C_6H_4Me-4)_2(PMe_2Ph)_2]$ (1a) also yields $[Ru(CO)\{C_6H_3MeC(O)C_6H_4Me\}CI(PMe_2Ph)_2]$ (4).

Since the early discovery by Chatt and Davidson¹ of an equilibrium between $[Ru(RH)(Me_2PCH_2CH_2PMe_2)_2]$ (RH = arene) and $[Ru(R)(H)(Me_2PCH_2CH_2PMe_2)_2]$, oxidative addition to ruthenium(0) and reductive elimination from ruthenium(11) complexes have received much less attention than the corresponding reactions of the iso-electronic rhodium(1) and rhodium(11) complexes. Here we report examples of reductive elimination by C–C bond formation and an apparent oxidative addition by C–H bond cleavage.

Complexes $[Ru(CO)_2R^1\dot{R}^2(PMe_2Ph)_2]$ (1a–c) (see Scheme 1) decompose in CHCl₃ or CDCl₃ solution at 298 K to yield ketones R¹R²CO. Decomposition is intramolecular, since (1c) yields *only* (4-MeOC₆H₄)(4-MeC₆H₄)CO, and the disappearance of (1a) follows simple first-order kinetics. As shown in Scheme 1, where L = PMe₂Ph, complexes (1a–c) react with Bu¹NC to form [Ru(CO)(CNBu¹)(COR¹)R²-PMe₂Ph)₂], (2a–c), by a two-step mechanism, the first step involving formation of the acyl species [Ru(CO)(COR¹)R²-PMe₂Ph)₂] (3a–c).²We believe that these are the species from which ketone elimination occurs, so that the overall first-order rate constant for decomposition is $k_1k_3/(k_2 + k_3)$. At 298.3 K in CHCl₃ solution the rate constant for decomposition of (1a) is 2.30×10^{-6} s⁻¹, and the value of k_1 is known² to be 2.02×10^{-4} s⁻¹, giving a value for the ratio $k_3/(k_2 + k_3)$ of 1.14×10^{-2} .

Complex (2a) also decomposes in CHCl₃ solution to yield ketone: the decomposition is inhibited by free BuⁱNC, indicating (see Scheme 1) that reductive elimination must be preceded by loss of isonitrile, despite the fact that one might expect both the steric effect and the π -acceptor ability of the isonitrile to promote reductive elimination. Possibly there are electronic factors favouring elimination from a five- rather than a six-co-ordinate species [as there are, apparently, for elimination from three- rather than four-co-ordinate palladium(II)].^{3,4} Alternatively the acyl ligands in intermediates (**3a**—c) may actually be bound to ruthenium through both carbon *and* oxygen,^{5,6} and this may lower the activation energy for attack by R².

In an attempt to trap the ruthenium product of the reaction, decomposition of (1a) was carried out in $CHCl_3$ at 308 K in the presence of PhC=CPh. Removal of $CHCl_3$ under reduced pressure and treatment of the residue with an ethanol-

propanone mixture yielded red crystals of [Ru(CO)-

 $\{C_6H_3MeC(O)C_6H_4Me\}Cl(PMe_2Ph)_2\}$ (4), the structure of which was determined by X-ray crystallography.⁷ Subsequent experiments showed that (4) was formed even if PhC=CPh was not present, and that the yield of (4) increased (and that of ketone decreased) with increasing temperature. We believe that the ketone, while still bound to Ru⁰, adds oxidatively to

yield $[Ru(CO){C_6H_3MeC(O)C_6H_4Me}H(PMe_2Ph)_2]$ and that subsequent reaction with CHCl₃ replaces hydride by chloride [complete separation of ketone and Ru⁰ species evidently does *not* occur prior to oxidative addition, since decomposition of (**1b**) in the presence of $(4-MeC_6H_4)_2CO$ does not yield (**4**)]. It may be that {as in the case of $[Ru(RH)(Me_2PCH_2CH_2PMe_2)_2]^1$ } the oxidative addition is reversible, and that replacement of hydride by chloride is needed to keep the ruthenium in the +2 state. This would explain why no Ru^{II} product could be isolated when (1a) was allowed to decompose in propanone, although (4-MeC₆H₄)₂CO was still formed.

We thank the S.E.R.C. for a maintenance grant (to D. R. S.).

Received, 2nd August 1983; Com. 1041

References

- 1 J. Chatt and J. M. Davidson, J. Chem. Soc., 1965, 843.
- 2 D. R. Saunders, M. Stephenson, and R. J. Mawby, J. Chem. Soc., Dalton Trans., in the press.
- [•] 3 F. Ozawa, T. Ito, Y. Nakamura, and A. Yamamoto, Bull. Chem. Soc. Jpn., 1981, 54, 1868.
 - 4 K. Tatsumi, R. Hoffmann, A. Yamamoto, and J. K. Stille, Bull. Chem. Soc. Jpn., 1981, 54, 1857.
 - 5 W. R. Roper and L. J. Wright, J. Organomet. Chem., 1977, 142, C1.
 - 6 E. R. Evitt and R. G. Bergman, J. Am. Chem. Soc., 1980, 102, 7003.
 - 7 Z. Dauter and C. D. Reynolds, personal communication.