The Use of $(Me_3Si)_2NN(SiMe_3)_2$ as a Reagent for the Synthesis of μ -Dinitrogen Complexes or as a Homogeneous One-electron Reducing Agent

Jonathan R. Dilworth,^a Stephen J. Harrison,^a Richard A. Henderson,^a and David R. M. Walton^b

^a A.R.C. Unit of Nitrogen Fixation, University of Sussex, Brighton BN1 9RQ, U.K.

^b School of Chemical and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

The reaction of NbCl₅ with $(Me_3Si)_2NN(SiMe_3)_2$, in the presence of tetrahydrofuran (thf) gives high yields (*ca.* 80%) of [{NbCl₃(thf)₂}₂N₂] (A); (A), or its tantalum analogue, reacts with Me₃SiS₂CNEt₂ to give a high yield of the dinitrogen complexes with exclusively sulphur co-ligands [{M(S₂CNEt₂)₃}₂N₂] (M = Nb or Ta), and reaction of [MoCl₄L₂] (L = MeCN or thf) with (Me₃Si)₂NN(SiMe₃)₂ gives [MoCl₃L₃] in high yield, together with N₂.

The recently reported indirect synthesis¹ of the unique 'diimido-like' bridged dinitrogen complexes of niobium and tantalum [{MCl₃(thf)₂}₂N₂] (thf = tetrahydrofuran) (M = Nb or Ta) (A) involves several steps, and the intermediacy of alkylidene complexes, which in the case of niobium are thermally unstable. We here report the high yield (*ca.* 80%) one-step synthesis of [{NbCl₃(thf)₂}₂N₂] by the stoi-

cheiometric reaction of NbCl₅ with $(Me_3Si)_2NN(SiMe_3)_2^2$ and thf in dichloromethane. The analogous reaction with TaCl₅ gives an, as yet, uncharacterised product containing N–SiMe₃ groups. Compounds (A) (M = Nb or Ta) are key intermediates for the preparation of a wide range of bridged dinitrogen complexes of niobium and tantalum derived by ligand metathesis.¹

Treatment of (A) (M = Nb or Ta) with an excess of trimethylsilyl diethyldithiocarbamate, Me₃SiS₂CNEt₂, in dichloromethane yields the first examples of dinitrogen complexes in which the co-ligands are exclusively sulphur donors $[{M(S_2CNEt_2)_3}_2N_2]$ (B) as brown (M = Nb) or orange (M = Ta) microcrystalline materials. Appropriate elemental analyses were obtained and the complexes react with an excess of hydrohalic acids in thf to give quantitative vields of hydrazine. A medium intensity i.r. band at ca. 850 cm⁻¹ is assigned to v(NN), as is found in complexes (A).¹ The ¹H n.m.r. spectra indicate that the complexes are fluxional at ambient temperature, consisting of a simple triplet and quartet for all the S₂CNEt₂ ligands. This behaviour is identical to that observed with the analogous $[M(NR)(S_2CNEt_2)_3]$ (R = alkyl) and $[M(NNMe_2)_2]$ $(S_2CNEt_2)_3$ reported recently.³

The reaction of other silvlated hydrazines and amines with MCl_5 has been exploited to yield hydrazido(2–)- and imidocomplexes respectively, as shown in equations (1) and (2) (L = thf or tertiary phosphine; R = Ph or Me_3Si). Tris(trimethylsilyl)amine eliminates only two Me_3Si groups to give a trimethylsilylimido-complex [equation (3)].

$$[\{MCl_3(thf)_2\}_2N_2]$$
(A)

 $MCl_{5} + (Me_{3}Si)_{2}NNMe_{2} \xrightarrow{L} [MCl_{3}(NNMe_{2})L_{2}] + 2Me_{3}SiCl \quad (1)$

 $MCl_5 + (Me_3Si)_2NR \xrightarrow{L} [MCl_3(NR)L_2] + 2Me_3SiCl (2)$

 $MCl_5 + (MeSi)_3N \xrightarrow{L} [MCl_3(NSiMe_3)L_2] + 2Me_3SiCl$ (3)

By contrast the complexes $[MoCl_4L_2]$ (L = MeCN or thf) react with $(Me_3Si)_2NN(SiMe_3)_2$ to give $[MoCl_3L_3]$ in high yield together with dinitrogen and Me_3SiCl in the stoicheiometry represented by equation (4). The reaction may proceed *via* an unstable bridged Me_3SiNNSiMe_3 complex or *via* an unstable μ^4 -N₂ complex $[(L_2Cl_3Mo)_2NN(MoCl_3L_2)_2]$. Analogously WCl₆ in CH₂Cl₂ is reduced to WCl₅ and WOCl₄ in MeCN to $[WOCl_3(MeCN)_2]$ in excellent yields. Since the only other products are Me_3SiCl and N₂ this is a particularly clean way to effect such reductions.

$$4[MoCl_4L_2] + (Me_3Si)_2NN(SiMe_3)_2 \xrightarrow{L} \\ 4[MoCl_3L_3] + 4Me_3SiCl + N_2 \quad (4)$$

Despite the dependence of the reaction products on the metal ion involved these represent extremely convenient synthetic routes to these complexes. We are currently investigating the potential of $(Me_3Sn)_2NN(SnMe_3)_2$, where the comparative weakness of the Sn–N bond should facilitate the reactions described above.

We thank Mrs. J. Blower for skilled technical assistance, and Professor R. R. Schrock for helpful discussions and for providing initial samples of (A) prepared by the alkylidene route.

Received, 27th October 1983; Com. 1413

References

- 1 S. M. Rocklage and R. R. Schrock, J. Amer. Chem. Soc., 1982, 104, 3077.
- 2 K. Seppelt and W. Sundermeyer, Chem Ber., 1969, 102, 1247.
- 3 L. Seng Tan, G. V. Golden, and B. L. Haymore, *Inorg. Chem.*, 1983, **22**, 1744.