## The Reduction of ( $\mu_2$ -NO) in [HRu<sub>3</sub>(CO)<sub>10</sub>( $\mu_2$ -NO)] to ( $\mu_3$ -NH) and ( $\mu_2$ -NH<sub>2</sub>) by Molecular Hydrogen

Brian F. G. Johnson, Jack Lewis, and Julian M. Mace

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

 $[HRu_3(CO)_{11}]^-$  reacts with NOBF<sub>4</sub> in moist MeCN to generate HRu<sub>3</sub>(CO)<sub>10</sub>NO, HRu<sub>3</sub>(CO)<sub>10</sub>NH<sub>2</sub>, and HRu<sub>4</sub>N(CO)<sub>12</sub>; the same products, together with H<sub>2</sub>Ru<sub>3</sub>(CO)<sub>9</sub>NH and H<sub>4</sub>Ru<sub>4</sub>(CO)<sub>12</sub>, are observed in the direct hydrogenation of HRu<sub>3</sub>(CO)<sub>10</sub>NO.

The reduction of nitric oxide by hydrogen on a heterogeneous surface is not a well understood reaction. Here we report the reduction of co-ordinated  $\mu_2$ -NO to  $\mu_3$ -NH and  $\mu_2$ -NH<sub>2</sub> in a *triangulo*-ruthenium cluster, an observation which may shed some light on the method by which the reduction of NO occurs.

Previously we have described the preparation of  $HRu_3$ -(CO)<sub>10</sub>NO from the reaction of NOBF<sub>4</sub> with [HRu<sub>3</sub>(CO)<sub>11</sub>]<sup>-.1</sup> Here we report that the reaction between [HRu<sub>3</sub>(CO)<sub>11</sub>]<sup>-</sup> and NOBF<sub>4</sub> in moist acetonitrile, in addition to the expected compound, also gave, in an unprecedented fashion, the compound HRu<sub>3</sub>(CO)<sub>10</sub>NH<sub>2</sub>.



Scheme 1

Table 1. I.r. absorptions  $(v_{max}/cm^{-1})$  in the carbonyl region (cyclohexane solvent).

| (2) $HRu_3(CO)_{10}NO$   | 2109w, 2070vs, 2064s, 2033vs, 2027m, 2019s, 1998w; v(NO); 1550w        |
|--------------------------|------------------------------------------------------------------------|
| $(3) HRu_3(CO)_{10}NH_2$ | 2100w, 2064vs, 2051s, 2034vw, 2024s, 2010w, 2002s, 1001w, 1082w        |
| $(4) HRu_4N(CO)_{12}$    | 2010vs, 2002s, 1991w, 1902w<br>2065vs, 2050m, 2024s, 2013w, sh, 1994m, |
| $(5) H_2Ru_3(CO)_9NH$    | 2114m, 2078s, 2055vs, 2044s, 2010vs,<br>1999s, 1987w                   |
|                          |                                                                        |

Reaction of  $[HRu_3(CO)_{11}]^-$  (1) with NOBF<sub>4</sub> in moist MeCN results in the formation, in addition to  $Ru_3(CO)_{12}$ , of a mixture of compounds (2), (3), and (4) [equation (1)].

$$[HRu_{3}(CO)_{11}]^{-} \xrightarrow{\text{NOBF}_{4}} HRu_{3}(CO)_{10}\text{NO}$$
(1)
(2)
$$+ HRu_{3}(CO)_{10}\text{NH}_{2} + HRu_{4}\text{N}(CO)_{12}$$
(1)
(3)
(4)

Compound (2) was shown to be the expected nitrosyl derivative. The i.r. and <sup>1</sup>H n.m.r. spectrum of this molecule are consistent with a *triangulo*-structure in which the NO and H ligands occupy bridging positions, and this has been confirmed by an X-ray crystal structure determination of the tri-substituted trimethyl phosphite derivative.<sup>1</sup> More surprising and unexpected was the formation of the  $\mu_2$ -NH<sub>2</sub> compound. Cluster (3) has been obtained in moderate yields, and the trinuclear formulation, HRu<sub>3</sub>(CO)<sub>10</sub>NH<sub>2</sub>, has been confirmed by mass spectroscopy. This result clearly indicated that a facile reduction of the  $\mu_2$ -NO ligand in (2) was occurring during the reaction.

The cluster  $[HRu_3(CO)_{11}]^-$  is known to be strongly basic and to be a good source of the H<sup>-</sup> ligand.<sup>2</sup> Treatment of (2) with either  $[HRu_3(CO)_{11}]^-$ , or  $[HRu_3(CO)_{11}]^-$  in the presence of CO, did not bring about the formation of (3), indicating that the  $-NH_2$  group did not arise from the nucleophilic addition of H<sup>-</sup> to co-ordinated  $\mu_2$ -NO. We suspected that the formation of (3) in the reaction of  $[HRu_3(CO)_{11}]^-$  with NOBF<sub>4</sub> arose from the fortuitous presence of HBF<sub>4</sub> (due to moist MeCN). Furthermore, co-ordinated NO has been shown to undergo electrophilic addition by H<sup>+</sup> to generate -NHOH and  $-NH_2OH.^3$ However, in this case, we were able to show that direct addition of H<sup>+</sup> to HRu<sub>3</sub>(CO)<sub>10</sub>NO did not bring about the required reduction. Keister has shown that at low temperatures  $[HRu_3(CO)_{11}]^$ adds H<sup>+</sup>, and above -30 °C forms  $H_2Ru_3(CO)_{11}$ .<sup>4</sup> On warming to room temperature this complex decomposes to produce  $Ru_3(CO)_{12}$  and presumably H<sub>2</sub>. We therefore considered the possibility that H<sub>2</sub> was the reductant in equation (1), and that this was formed according to equations (2) and (3). The reaction of  $HRu_3(CO)_{10}NO$  with H<sub>2</sub> (1 atmos; 100 °C) gave four neutral products (3), (4), (5) and (6) [equation (4)].

$$[HRu_{3}(CO)_{11}]^{-} + H^{+} \longrightarrow H_{2}Ru_{3}(CO)_{11}$$
(2)

$$H_2Ru_3(CO)_{11} \longrightarrow Ru_3(CO)_{12} + H_2$$
 (3)

$$HRu_{3}(CO)_{10}NO + H_{2} \longrightarrow HRu_{3}(CO)_{10}NH_{2}$$
(2)
(3)
$$+ HRu_{4}N(CO)_{12} + H_{4}Ru_{4}(CO)_{12}$$
(4)
(5)
$$+ H_{2}Ru_{3}(CO)_{9}NH$$
(4)
(6)

Compound (5) was shown to be  $H_4Ru_4(CO)_{12}$  on the basis of its spectroscopic data. Compound (3) was identified as  $HRu_3(CO)_{10}NH_2$  by a combination of spectroscopic methods. Thus, the mass spectrum shows the molecular ion at m/z 609 (<sup>104</sup>Ru), followed by the sequential loss of 10 CO groups; the <sup>1</sup>H n.m.r. spectrum shows a resonance arising from the hydrido-ligand at  $\delta$  -13.96, and, finally, the i.r. spectrum (Table 1) is similar to those observed for the osmium analogue HOs<sub>3</sub>(CO)<sub>10</sub>NH<sub>2</sub>,<sup>5</sup> and other, related, HM<sub>3</sub>(CO)<sub>10</sub>X systems.

Compound (6) was identified as  $H_2Ru_3(CO)_9NH$  by its mass spectrum [ $M^+$ , m/z 581 (<sup>104</sup>Ru)], and its i.r. spectrum (Table 1). This is similar to that of  $H_2Os_3(CO)_9(\mu_3-NPh)$ which shows bands at 2115w, 2083s, 2056s, 2034m, 2010s, 1988m, and 1977w cm<sup>-1</sup> (hexane solution).<sup>6</sup> Compound (4) has been fully characterised as  $HRu_4N(CO)_{12}$ , previously observed in reaction (1), and as a product of the reaction of [ $H_3Ru_4(CO)_{12}$ ]<sup>-</sup> with NOBF<sub>4</sub>.<sup>7</sup>

In a separate experiment (carried out in a high-pressure i.r. cell), the reaction was monitored by following the change in i.r. spectrum with time. At a hydrogen pressure of approximately 50 atmospheres, a smooth transformation of (2) into the observed products [with the exception of (4)] was observed.

In further experiments we have found the following. (i)  $H_2Ru_3(CO)_9NH$  reacts with  $H_2$  under pressure to produce  $HRu_3(CO)_{10}NH_2$  and  $H_4Ru_4(CO)_{12}$ . (ii) The same cluster reacts with CO under pressure to form  $HRu_3(CO)_{10}NH_2$ . (iii)



On reaction with CO under pressure,  $HRu_3(CO)_{10}NH_2$  forms  $Ru_3(CO)_{12}$ . (iv)  $HRu_3(CO)_{10}NH_2$  produces  $H_4Ru_4(CO)_{12}$  on reaction with  $H_2$  under pressure. (v) On heating,  $HRu_3-(CO)_{10}NH_2$  forms some  $H_2Ru_3(CO)_9NH$ . (vi)  $HRu_4N(CO)_{12}$  produces  $H_4Ru_4(CO)_{12}$  on reaction with  $H_2$  under pressure. These reactions lead us to propose the mechanism shown in Scheme 1.

Reactions in this scheme include oxidative-addition of  $H_2$  to  $HRu_3(CO)_{10}(\mu_2\text{-}NO)$  (2) to form  $H_3Ru_3(CO)_{10}(\mu_1\text{-}NO)$  (2a), and the subsequent reduction would presumably follow the sequence shown in equation (5).

$$\begin{array}{c} H_{3}Ru_{3}(CO)_{10}(\mu_{1}\text{-NO}) \longrightarrow HRu_{3}(CO)_{10}(NHOH) \\ & \downarrow H_{2} \\ HRu_{3}(CO)_{10}NH_{2} \xleftarrow{} H_{3}Ru_{3}(CO)_{10}(NHOH) \end{array}$$
(5)

Reaction of  $HRu_3(CO)_{10}NH_2$  with more  $H_2$  is then considered to lead first to  $NH_3$  and  $H_2Ru_3(CO)_{10}$ , which by analogy with  $H_2Os_3(CO)_{10}$  is expected to be converted rapidly into  $H_4Ru_4(CO)_{12}^8$  [equation (6)]. A measure of support for this pathway is given by the fact that the loss of a nitrosyl oxygen in the elements of water has previously been observed for a cluster system  $[H_3Os_4(CO)_{12}NO \rightarrow HOs_4N(CO)_{12}].^9$ 

$$HRu_{3}(CO)_{10}NH_{2} \rightarrow H_{2}Ru_{3}(CO)_{10} \rightarrow H_{4}Ru_{4}(CO)_{12} \quad (6)$$

Alternatively, the reaction may proceed via the formation of a nitride intermediate [equation (7)]. To us, this appears a less likely pathway, because of the relative amounts of (3) and (6) produced (40:3%) given the necessity of (6) to scavenge CO from the system. However, the loss of a nitrosyl oxygen as

$$HRu_{3}(CO)_{10}(\mu_{2}\text{-}NO) \xrightarrow[-CO_{2}]{-CO_{2}} \stackrel{\text{`H}_{3}Ru_{3}(CO)_{9}N'}{\downarrow}$$
(7)  

$$HRu_{3}(CO)_{10}NH_{2} \xleftarrow{[CO]} H_{2}Ru_{3}(CO)_{9}NH$$

 $CO_2$  has been observed for a cluster system [HOs<sub>4</sub>(CO)<sub>13</sub>NO  $\rightarrow$  HOs<sub>4</sub>N(CO)<sub>12</sub>],<sup>9</sup> and H-transfer onto the N-atom of a cluster nitride is implied by the formation of H<sub>4</sub>Ru<sub>4</sub>(CO)<sub>12</sub> from HRu<sub>4</sub>N(CO)<sub>12</sub> above. Thus we cannot, at this stage, differentiate between these two possibilities.

In connection with the above, it is interesting that, unlike the ruthenium case,  $HOs_4N(CO)_{12}$ , on treatment with  $H_2$ under pressure, brings about H-addition and CO-loss to give a moderate yield of the new compound  $H_3Os_4N(CO)_{11}$ . This cluster, of which the ruthenium analogue is known,<sup>9</sup> has been identified by its spectroscopic data.

We thank A. G. Cowie for assistance with the high-pressure i.r. experiments, and British Petroleum (J. M. M.) for financial support.

Received, 26th September 1983; Com. 1281

## References

- 1 B. F. G. Johnson, P. R. Raithby, and C. Zuccaro, J. Chem. Soc., Chem. Commun., 1980, 99.
- 2 J. C. Bricker, C. C. Nagel, and S. G. Shore, J. Am. Chem. Soc., 1982, 104, 1444.
- 3 K. R. Grundy, C. A. Reed, and W. R. Roper, *Chem. Commun.*, 1970, 1501.
- 4 J. B. Keister, J. Organometal. Chem., 1980, 190, C36.
- 5 E. G. Bryan, B. F. G. Johnson, and J. Lewis, J. Chem. Soc., Dalton Trans., 1977, 1328.
- 6 K. Burgess, Ph.D. thesis, Cambridge University, 1983.
- 7 D. Braga, B. F. G. Johnson, J. Lewis, J. M. Mace, M. McPartlin, J. Puga, W. J. H. Nelson, P. R. Raithby, and K. H. Whitmire, J. Chem. Soc., Chem. Commun., 1982, 1081.
- 8 S. A. R. Knox, J. W. Koepke, M. A. Andrews, and H. D. Kaesz, J. Am. Chem. Soc., 1975, 97, 3942.
- 9 M. A. Collins, B. F. G. Johnson, J. Lewis, J. M. Mace, J. Morris, M. McPartlin, W. J. H. Nelson, and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1983, 689.