Relationship between Stable Monovalent Copper in Copper–Chromia Catalysts and Activity for Methanol Formation

Gustav R. Apai, John R. Monnier, and Michael J. Hanrahan

Research Laboratories, Eastman Kodak Company, Rochester, New York 14650, U.S.A.

The activity for methanol formation of copper–chromia catalysts is sensitive to the temperature of calcination pretreatment; X-ray photoelectron spectroscopic studies of the reduced catalysts showed a correlation between the amount of stable surface Cu⁺ and the activity for methanol formation.

Copper in Cu–ZnO and Cu–Cr₂O₃ catalysts is postulated to be the active site for the synthesis of methanol, at low temperature and pressure, from CO and H₂. Herman *et al.*,¹ on the basis of diffuse reflectance, proposed that Cu⁺ dissolved in the ZnO lattice is the catalytically active species. Okamoto *et al.*,² using X-ray photoelectron spectroscopy (XPS), proposed that both Cu⁺ and an electronically altered Cu⁰ species are the active sites. Using the conclusions made by Herman *et al.* for Cu–ZnO, Courty *et al.*³ postulated that copper in the IFP (Institute Francais du Pétrole) cobalt-modified copper– chromia linear alcohol catalyst yields an active phase of Cu⁺-chromite. We show here that the activity for methanol formation of Cu–Cr₂O₃ catalysts calcined in air at various temperatures can be related to the amount of surface stable Cu⁺ detected by XPS.

Cu–Cr₂O₃ catalysts were prepared by the decomposition of a homogeneous citrate complex. Citric acid was added to an aqueous solution of equimolar Cu²⁺ and Cr³⁺ acetates to form the corresponding Cu²⁺–Cr³⁺ citrate precipitate. This slurry was evaporated to dryness on a steam bath to form a glassy

Figure 1. Cu $L_3M_{4,5}M_{4,5}$ X-ray-induced Auger spectra for 1:1 Cu-Cr₂O₃ catalysts calcined at various temperatures (T_{calc}), then reduced at 270 °C for 3 h in an atmospheric hydrogen stream [30 cm³ (S.T.P.)/min].

solid, which was vacuum dried at 150 °C for 2 h. The resulting powder was ground to 20—40 mesh and divided into four samples, which were air-calcined at 300, 350, 400, and \geq 500 °C to yield the mixed oxides. Each catalyst was then reduced at 270 °C for 2 h in flowing H₂ diluted to 20% in He at 1 atm pressure before kinetic evaluation or XPS study.

After H₂ treatment, catalytic activities were evaluated in a single-pass high-pressure flow reactor maintained at 850 lb in⁻² (gauge) and 270 °C. The feed gas was supplied from a premixed cylinder of 67% H₂ and 33% CO. Under these conditions CO conversions were $\leq 2\%$.

Samples which had undergone identical calcination and reduction treatments were mounted on a resistively heated boat and reduced for an additional hour at 270 °C in a preparation chamber attached to an ultrahigh-vacuum XPS analysis chamber. XPS data were obtained with unmonochromatized Mg- K_{α} radiation (hv 1253.6 eV) and an analyser resolution of 0.4 eV. Binding energies for selected support peaks were determined for the untreated catalysts by assigning the carbon 1s peak of the adventitious carbon to have a binding energy of 284.6 eV. Thereafter the Cu peaks were referenced to the support peaks used as internal standards.

Upon reduction of the catalysts in H_2 , the XPS spectrum showed that the oxidation state of copper changed from Cu^{2+} , characterized by a Cu 2p_{3/2} binding energy of 933.6 eV and its associated satellite peak, to Cu+ and/or Cu0. Because Cu+ and Cu⁰ cannot be distinguished on the basis of the Cu 2p_{3/2} binding energy alone, the Cu $L_3M_{4,5}M_{4,5}$ X-ray-induced Auger level was investigated. Figure 1 shows the Cu(LMM) Auger spectra for the H₂-reduced catalysts as a function of calcination temperature. The principal peak at 918.6 eV can be assigned to Cu⁰ from studies of spectra of clean Cu metal.⁴ A shoulder at ca. 916.6 eV is due to Cu+ species, as identified from studies of Cu₂O and other Cu⁺ compounds.⁴ The fraction of Cu+ relative to the total Cu changes as a function of calcination temperature, with its highest concentration resulting from 350 °C air calcination. Cu⁰ and Cu⁺ contributions to the XPS data were determined by comparison with reference spectra which were generated by adding together Cu(LMM) Auger spectra from copper metal and copper(I) chromite in various ratios. Quantitative results were derived from peak heights measured above a linear background (from kinetic

Table 1. Steady-state activities for methanol formation as a function of calcination temperature $(T_{calc.})$.

T _{calc.} /°C	µmol MeOHª/ s m² catalyst	XPS $[Cu^{+}/(Cu^{0} + Cu^{+})]^{b}$
300	0.017	0.17
350	0.020	0.21
400	0.010	0.05
ca. 500	0.007	0.04

^a Uncertainty \pm 0.002. ^b Uncertainty \pm 0.02.

energy 914.5 to 920 eV) which was identical for the experimental and reference spectra.

The steady-state catalytic activities for methanol formation (Table 1) are also sensitive to calcination pretreatment conditions and vary in parallel with the surface concentration of Cu⁺ stable to H₂ reduction. The existence of a considerable amount of Cu⁺ from a 350 °C air calcination substantiates the proposal that Cu⁺-chromite may be the active alcohol site.³

These results provide direct evidence for the existence of a monovalent Cu species that is stable to H_2 reduction at 270 °C. In addition, the correlation of the surface Cu⁺ concentration with the activity for methanol formation establishes for the

first time direct evidence for Cu^+ as the associative CO (*i.e.*, alcohol producing) site on these catalysts.

Received, 23rd September 1983; Com. 1259

References

- 1 R. G. Herman, K. Klier, G. W. Simmons, B. P. Finn, J. B. Bulko, and T. P. Kobylinski, J. Catal., 1979, 56, 407.
- 2 Y. Okamoto, K. Fukino, T. Imanaka, and S. Teranishi, J. Chem. Soc., Chem. Commun., 1982, 1405.
- 3 P. Courty, D. Durand, E. Freund, and A. Sugier, J. Mol. Catal., 1982, 17, 241.
- 4 T. H. Fleisch and G. J. Mains, Appl. Surf. Sci., 1982, 10, 51.