Bis(tertiary-amine)difluoroboron Cations

Melvin J. Farquharson and J. Stephen Hartman*

Department of Chemistry, Brock University, St. Catharines, Ontario, Canada L2S 3A1

Tertiary amines of low steric hindrance readily displace bromide ion from bromodifluoroborane adducts of tertiary amines, $D \cdot BF_2Br$ (D = donor), to form bis(tertiary-amine)difluoroboron cations, $D_2BF_2^+$ and $DD'BF_2^+$.

Although tetrahedral four-co-ordinate boron cations are exceptionally stable and many have been prepared,¹ few difluoroboron cations are known. Certain chelating ligands LL form (LL) $BF_2^+ \cdot BF_4^-$ directly on reaction with $BF_{3,2}^{-2}$ but others do not.³ Tetramethylurea BF₃ and hexamethylphosphoramide BF3 are in equilibrium in solution with small amounts of the ionic form of the adduct, $D_2BF_2^+ \cdot BF_4^-, 4$ (where D represents the donor ligand) but this behaviour is exceptional for BF₃ adducts. Hydrogen substitution in already formed $D_2BH_2^+$ cations gives a range of substituted boron cations, but elemental fluorine is required to give difluoroboron cations by this route.⁵ The most widely used method for boron cation formation, halide ion displacement from $D \cdot BH_2X$ or $D \cdot BX_3$ by a neutral donor, 5,6 has not been explored as a route to difluoroboron cations because of the unsuitability of F- as a leaving group from D·BF₃ and the unavailability until recently of the mixed boron trihalide adducts $D \cdot BF_2 X$.⁷ We now report that the readily available (tertiary-amine) BF_2Br adducts^{7,8} give good yields of $D_2BF_2^+$ and DD'BF₂⁺ under mild conditions, provided that the displacing amine D' is of low steric hindrance; equation (1).

 $D \cdot BF_2Br + D' \longrightarrow DD'BF_2^+ + Br^-$

Quinuclidine (Q; 1-azabicyclo[2.2.2]octane) is particularly favourable in this reaction. 128.4 MHz ¹¹B N.m.r. spectra of CDCl₃ solutions of (Q)BF_nBr_{3-n} (n = 0—3) adducts, formed by equilibrating (Q)BF₃ wth BBr₃ and quenching the resulting uncomplexed BF_nBr_{3-n} with excess of quinuclidine,⁸ show initially the multiplets of all four $(Q)BF_nBr_{3-n}$ adducts. On standing $(25 \,^{\circ}\text{C}, 18 \,\text{h})$ the $(Q)BF_2Br \, 1:2:1$ triplet at 3.6 p.p.m.⁸ disappears and is replaced by a new triplet at 1.4 p.p.m. assigned to $(Q)_2BF_2^+$, while the multiplets of the other adducts are unaffected. In the ¹⁹F spectrum a new 1:1:1:1 quartet at -161.5 p.p.m. replaces the (Q)BF₂Br quartet at -133.0 p.p.m. The (Q)₂BF₂⁺ species can be precipitated from CHCl₃ solution as the bromide and is stable in aqueous solution. Fast atom bombardment mass spectrometry⁹ of the precipitate, carried out in a glycerol matrix, gives peaks at m/z 271 [100%; (Q)₂BF₂⁺], 160 [57.3; $(Q)BF_{2}^{+}$, 112 [17.1; (Q)H⁺], and 111 [12.9; (Q)⁺] and no other major peaks.

Table 1 gives n.m.r. parameters of the $D_2BF_2^+$ ions and indicates variations in their rates of formation. Low amine steric hindrance greatly favours the reaction. No correlation of reaction rate with base strength is evident. Mixed-donor cations $DD'BF_2^+$ have n.m.r. parameters intermediate

 Table 1. N.m.r. parameters and formation times of bis(amine)difluoroboron cations.

D = D'		δ ¹⁹ F /p.p.m.ª	J (¹¹ B– ¹⁹ F) /Hz	δ ¹¹ Β /p.p.m. ^b	Formation time ^c	Amine p <i>K</i> _b
Pyridine Q ^f Me ₃ N Me ₂ NEt MeNEt ₂ Et ₃ N		- 155.6 - 161.5 - 165.4 - 158.9	22.9 39.5 36.2 39.3	1.8 1.4 1.9 2.3	20 min (25 °C) 24 h (25 °C) 36 h (25 °C) >24 h (60 °C) d d	8.77 2.9 4.24 4.01 3.71 3.35
D Pyridine Me ₃ N Me ₂ NEt MeNEt ₂ Et ₃ N	D Q Q Q Q Q	-161.3 -163.7 -159.9 -155.2 -148.4	28.6 38.1 38.8 40.5 43.0	1.6 1.5 1.8 1.9 2.2	e c e c	

(1)

^a Relative to CFCl₃. ^b Relative to $Et_2O \cdot BF_3$. ^c Approximate time for completion of reaction (1) (CDCl₃ solution; 0.5 M in total adducts and in uncomplexed amine). ^d No cation detectable even after 24 h at 80 °C. ^c D' for D exchange interferes when D \neq D'. ^f Q = quinuclidine.

between those of $D_2BF_2^+$ and $D'_2BF_2^+$, and are formed only when the attacking amine D' has low steric hindrance (Me₂NEt and above, in Table 1). Steric requirements for the already-attached amine in D·BF₂Br are much less stringent, and species such as (Et₃N)(Q)BF₂⁺ are readily prepared. Competing reactions can, however, interfere. These include Cl, Br exchange with CDCl₃ solvent, donor exchange (D for D' in the adducts and in the cation), and adduct decomposition.

Tertiary-amine adducts $D \cdot BFBr_2$, in striking contrast to $D \cdot BF_2Br$, are totally unreactive toward bromide displacement under our conditions. This is reminiscent of the mixed tetrahaloborate anions BF_nX_{4-n} (n = 0—4), in which the BF_3X^- ion, with one heavy halogen, is by far the most susceptible to exchange reactions.¹⁰

Relative rates for $D_2BF_2^+$ formation are $D \cdot BF_2I \gg D \cdot BF_2Br \gg D \cdot BF_2Cl$, and otherwise-inaccessible cations such as (PhNMe₂)₂BF₂⁺ can be formed in small amounts by iodide displacement from $D \cdot BF_2I$. However, halogen-redistribution equilibria are so unfavourable to $D \cdot BF_2I$ formation⁸ that these adducts will have limited usefulness as precursors. (Q)BF₂Cl reacts very slowly (only 10% reaction after 40 days at 48 °C) compared to (Q)BF₂Br.

The dependence of $D_2BF_2^+$ formation on amine steric hindrance is consistent with displacement reactions of D·BH₂X adducts⁵ and with symmetrical vs. unsymmetrical cleavage of B_2H_6 on adduct formation, giving D·BH₃ or $D_2BH_2^+ \cdot BH_4^-$.¹¹ As in our work, bulky donors do not allow cation formation. Previously puzzling scattered observations of D₂BF₂⁺ formation from BF₂Cl adducts of tetramethylurea⁴ and of benzoate esters¹² now fall into place: these donors have far lower steric hindrance than amines or ethers, and even Clcan be displaced readily. In keeping with the dominant effect of donor steric hindrance, we find that BF₂Cl adducts of low-steric-hindrance nitrogen donors amidines $RC(=NR')NR''_2$, and imines $R_2C=NR'$ also lose Cl^- easily to form D₂BF₂+.13

We thank the Natural Sciences and Engineering Research

Council of Canada for financial support, Mr. T. R. B. Jones for technical assistance, and the South Western Ontario High Field N.M.R. Centre (Dr. R. E. Lenkinski, manager) for providing instrument time.

Received, 8th September 1983; Com. 1207

References

- G. E. Ryschkewitsch in 'Boron Hydride Chemistry,' ed. E. L. Muetterties, Academic Press, New York, 1975, Ch. 6; O. P. Shitov, S. L. Ioffe, V. A. Tartakovskii, and S. S. Novikov, Russ. Chem. Rev. (Engl. Transl.), 1970, 40, 905; H. Nöth, Prog. Boron Chem., 1970, 3, 211; H. Nöth and V. Schuchardt, Chem. Ber., 1974, 107, 3104; M. A. Mathur and G. E. Ryschkewitsch, Inorg. Chem., 1980, 19, 3054.
- N. Wiberg and J. W. Buchler, *Chem. Ber.*, 1963, 96, 3000; D. D. Axtell, A. C. Campbell, P. C. Keller, and J. V. Rund, *J. Coord. Chem.*, 1976, 5, 129.
- 3 H. C. Brown, B. Singaram, and J. R. Schweir, *Inorg. Chem.*, 1979, **18**, 51; H. C. Brown and B. Singaram, *ibid.*, 1979, **18**, 53.
- 4 J. S. Hartman and G. J. Schrobilgen, *Inorg. Chem.*, 1974, 13, 874; J. S. Hartman and P. Stilbs, *J. Chem. Soc.*, *Dalton Trans.*, 1980, 1142.
- 5 N. E. Miller and E. L. Muetterties, J. Am. Chem. Soc., 1964, 86, 1033.
- 6 G. E. Ryschkewitsch and W. H. Myers, Synth. React. Inorg. Metal-Org. Chem., 1975, 5, 123.
- 7 J. S. Hartman and J. M. Miller, Adv. Inorg. Chem. Radiochem., 1978, 21, 147.
- 8 A. Fox, J. S. Hartman, and R. E. Humphries, J. Chem. Soc., Dalton Trans., 1982, 1275.
- 9 M. Barber, R. S. Bordoli, G. J. Elliott, R. D. Sedgwick, and A. N. Tyler, *Anal. Chem.*, 1983, **54**, 645A; M. Barber, R. S. Bordoli, R. D. Sedgwick, and A. N. Tyler, *Nature*, 1981, **293**, 270.
- 10 J. S. Hartman and G. J. Schrobilgen, Inorg. Chem., 1972, 11, 940.
- 11 H. D. Johnson and S. G. Shore, Fortschr. Chem. Forsch., 1970, 15, 87.
- 12 J. S. Hartman, B. D. McGarvey, and C. V. Raman, *Inorg. Chim.* Acta, 1981, **49**, 63.
- 13 A. Fox, J. S. Hartman, and A. T. Nguyen, unpublished work.