Total Synthesis of the Potent Mutagen (S)-3-(Dodeca-1,3,5,7,9-pentaenyloxy)propane-1,2-diol

K. C. Nicolaou,* Robert Zipkin, and David Tanner

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, U.S.A.

A total synthesis of the mutagenic (S)-3-(dodeca-1,3,5,7,9-pentaenyloxy)propane-1,2-diol (1) from (R)-glycerol acetonide (2), potassium glutaconate (6), and the diphenylphosphine oxide (11) is reported.

Structure (1) [(S)-3-(dodeca-1,3,5,7,9-pentaenyloxy)-propane-1,2-diol] has recently been assigned to a potent mutagenic agent isolated from human faeces.^{1,2} The low natural abundance of this rather unstable biomolecule coupled with the need for further biological investigations to elucidate its possible role in colon cancer etiology dictated a synthesis. We now report a short and convenient total synthesis of (1) based on a highly convergent scheme.

(R)-Glycerol acetonide (2)³ was tosylated (TsCl-pyridine,† 91%) and deprotected (10% aq. HCl, acetone, 75 \circ C, 80%) to afford the diol (4) via compound (3).[‡] Silvlation of (4) (Ph₂-ButSiCl-imidazole, DMF, † 94%) followed by displacement of the tosylate group in (5) by potassium glutaconate⁴ (6) (excess, DMF, 75 °C) furnished the dienol aldehyde derivative (7) [40%, ¹H n.m.r., CDCl₃, 250 MHz, δ 9.43 (1H, d, J 8.5 Hz, CHO), 7.25-7.65 (20H, m, Ph), 6.95 (1H, dd, J 15.0 and 12.0 Hz, CH=CHCHO), 6.78 (1H, d, J 12.0 Hz, OCH=), 7.00 (1H, dd, J 15.0 and 8.5 Hz, =CHCHO), and 6.63 (1H, J 12.0 Hz, OCH=CH)] together with minor amounts of its Z enol isomer from which it was separated by flash silica column chromatography [(7): $R_{\rm f}$ 0.18; Z-isomer of (7): $R_{\rm f}$ 0.28, 30% ether in light petroleum]. The diphenylphosphine oxide (11) required for the completion of the polyene chain was constructed as follows. Condensation of propionaldehyde with the anion of trimethylphosphonocrotonate (LDA, THF, $\dagger -78 \rightarrow 25 \,^{\circ}\text{C}$, 78%) afforded the ester (8) which was reduced (excess of DIBAL, † CH₂Cl₂, -78 °C, 84%) to give

[†] Abbreviations: $Ts = p-MeC_6H_4SO_2$; DMF = dimethylformamide; LDA = lithium di-isopropylamide; THF = tetrahydrofuran; DIBAL = di-isobutylaluminium hydride; DMAP = 4-N,Ndimethylaminopyridine.

the alcohol (9), esterified (2,6-dichlorobenzoyl chloride, pyridine, DMAP[†] catalyst, CH₂Cl₂, 90%) to provide (10), and treated with the anion of diphenylphosphine⁵ (BuⁿLi, THF, -78 °C) to afford, after H₂O₂ work-up, the requisite (11) (82%) [R_f 0.28, 2% methanol in ether-silica; m.p. 101–103 °C (ether in light petroleum); ¹H n.m.r., CDCl₃, 250 MHz δ 7.88–7.40 (10H, m, Ph), 6.14–5.84 (2H, m, olefinic), 5.68–5.43 (2H, m, olefinic), 3.15 (2H, dd, *J*, 16.0 and 8.0 Hz, CH₂P), 2.05 (2H, m, CH₂CH₃), and 0.98 (3H, t, *J* 7 Hz, CH₃)].

Reaction of aldehyde (7) with the anion of (11) (LDA, THF, -78 °C) gave the corresponding hydroxyphosphine oxide adduct which was decomposed under basic conditions (KOBu^t, THF, 0 °C), leading to the bis(t-butyldiphenylsilyl) ether (12) (55%), purified by flash silica column chromatography [R_f 0.43; 5% ether in light petroleum; ¹H n.m.r., CDCl₃, 250 MHz, δ : 7.20—7.70 (20H, m, Ph), 6.41 (1H, d, J 12.0 Hz, OCH=), 5.66—6.25 (8H, m, olefinic), 5.48 (1H, m, olefinic), 3.58—4.02 (5H, m, CH–O, CH₂O), 2.15 (2H, m, CH₂CH₃), 1.04 and 1.00 (each 9H, s, Bu^t), and 1.01 (3H, J 7.0 Hz, CH₃)]. Finally deprotection of (12) (Buⁿ₄NF, THF, 0 \rightarrow 25°C) led to the labile (1) which was obtained after flash silica column chromatography ($R_f 0.29, 2\%$ methanol in ether) as a mixture with its Z enol isomer as reported.^{1,2}§

We thank the National Institutes of Health, the A. P. Sloan Foundation, the Camille and Henry Dreyfus Foundation and Merck Sharp and Dohme for generous financial support.

Received, 1st November 1983; Com. 1429

References

- 1 N. Hirai, D. G. I. Kingston, R. L. Van Tassel, and T. D. Wilkins, J. Am. Chem. Soc., 1982, 104, 6149.
- 2 I. Gupta, J. Baptista, W. R. Bruce, C. T. Che, R. Furrer, J. S. Gingerich, A. A. Grey, L. Marai, P. Yates, and J. S. Krepinsky, *Biochemistry*, 1983, **22**, 241.
- 3 S. Takano, H. Numata, and K. Ogasawara, *Heterocycles*, 1982, 19, 237.
- 4 Review: J. Becher, Synthesis, 1980, 589; preparation: J. Becher, Org. Synth., 1980, 59, 79.
- 5 B. Lythgoe, T. A. Moran, M. E. N. Nambudiry, S. Ruston, J. Tideswell, and P. W. Wright, *Tetrahedron Lett.*, 1975, 3863.

§ We thank Professor D. G. I. Kingston for a ¹H n.m.r. spectrum of (1) and a preprint describing his recent synthesis of (1): A. A. L. Gunatilaka, N. Hirai, and D. G. I. Kingston, *Tetrahedron Lett.*, 1983, 24, 5457.