Activation of μ -Alkylidene Ligands through Oxidation–Deprotonation: A New Synthesis of μ -Methyne, and its Hydrogenation to μ -Methyl

Neil G. Connelly, Nigel J. Forrow, Benjamin P. Gracey, Selby A. R. Knox, and A. Guy Orpen Department of Inorganic Chemistry, The University, Bristol BS8 1TS, U.K.

A new method of activating μ -alkylidene complexes is described, involving oxidation to dications followed by deprotonation, so that μ -CH₂ is converted to μ -CH⁺ and μ -CHMe to μ -CHCH₂⁺; the mono-cationic products react with nucleophiles to produce derivatives of the original μ -alkylidene, while μ -CH⁺ yields μ -CH₃⁺ readily under pressure of hydrogen.

In a recent communication we described the slow, low yield formation of the cation $[Ru_2(\mu-CH)(\mu-CO)(\mu-dppm)(\eta-C_5H_5)_2]^+$ (3) [dppm = bis(diphenylphosphino)methane] from $[Ru_2(\mu-CH_3)(\mu-CO)(\mu-dppm)(\eta-C_5H_5)_2]^+$ (5) in solution.¹ As a result of efforts to clarify this intriguing μ -CH₃ to μ -CH transformation we have discovered a new method of activating hydrocarbon species co-ordinated at di- and tri-metal centres, described in this and the following² communication.

A possible first step in the conversion of μ -CH₃ into μ -CH was the loss of the agostic hydrogen as a radical (there is evidence that an agostic C–H bond is weakened towards both homolytic and heterolytic fission³), generating a radical cation

r - r - upp

Figure 1. Cyclic voltammograms of (1) (a and b) and (3) (c).

 $[Ru_2(\mu-CH_2)(\mu-CO)(\mu-dppm)(\eta-C_5H_5)_2]^+$. The additional possibility that the latter could be obtained in high yield by oxidation of $[Ru_2(\mu-CH_2)(\mu-CO)(\mu-dppm)(\eta-C_5H_5)_2]^1$ (1) was explored by cyclic voltammetry. The cyclic voltammogram[†] of (1) shows (Figure 1a) three oxidation waves in the potential range 0 to 1.5 V. The first $(E^{\circ} = 0.24 \text{ V})$ is diffusion-controlled and fully reversible (Figure 1b), and corresponds to the formation of the radical cation $[Ru_2(\mu CH_2$)(μ -CO)(μ -dppm)(η -C₅H₅)₂]⁺; the second is irreversible with a peak potential, E_{ox} , of 0.65 V at a scan rate of 200 mV s⁻¹. Our suspicion that the third, reversible wave (E° = 1.16 V) was due to the one-electron oxidation of (3), formed via an EEC (electrochemical-electrochemical-chemical) mechanism in which the dication $[Ru_2(\mu-CH_2)(\mu-CO)($ dppm) $(\eta$ -C₅H₅)₂]²⁺ (2) is formed (second wave) and subsequently deprotonates (Scheme 1), was confirmed by the synthesis of (3) through chemical oxidation and its subsequent electrochemistry. Thus, addition of two equivalents of $[Fe(\eta (C_5H_5)_2$ [PF₆] as oxidant to (1) in dichloromethane, in the presence of the sterically-hindered base 2,6-dimethylpyridine, gives a near-quantitative yield of (3), the cyclic voltammogram of which shows one reversible one-electron oxidation wave with $E^{\circ} = 1.16 \text{ V}$ (Figure 1c).

This oxidation-deprotonation route provides the μ -methyne cation (3) readily and allows a thorough study of its chemistry, the preliminary results of which are displayed in Scheme 1. Reaction with nucleophiles gives μ -alkylidene

Scheme 1. Reagents: i, $2[Fe(C_5H_5)_2][PF_6]$, CH_2CI_2 ; ii, 2,6-dimethylpyridine, $^-H^+$; iii, NaBH₄, MeLi, or NEt₃; iv, H_2 (150 atm), 100 °C, 16 h.

complexes (4), the sequence $(1) \rightarrow (2) \rightarrow (3) \rightarrow (4)$ representing a fast and efficient method of functionalising a μ -methylene ligand. The cation (3) also reacts with hydrogen (150 atm, 100 °C, 16 h) to afford the μ -methyl species (5) in greater than 90% yield. This unprecedented hydrogenation of μ -methyne may be related to 'hydrocarbation' [the apparently concerted reaction of μ -CH⁺ with an alkene to give μ -CR⁺ (ref. 4)], and it is then conceivable that the original¹ synthesis of (3) from (5) involves concerted elimination of H₂. The hydrogenation of μ -CH to give μ -CH₃ may play an important role in catalytic CO hydrogenation.

The EEC mechanism by which (3) is obtained from (1) is observed in other electron-rich diruthenium complexes. Thus, the cyclic voltammogram of the µ-ethylidene complex $[Ru_2(CO)_2(\mu-CO)(\mu-CHMe)(\eta-C_5Me_5)_2]$ is qualitatively similar [oxidation waves at 0.55 V (reversible) and 0.98 V (irreversible, scan rate 100 mV s^{-1})] to that of (1), but the shifts of the waves to higher potentials (by ca. 0.3 V) necessitates the use of a stronger chemical oxidant. Accordingly, an excess of AgBF4 was added, giving the µ-vinyl species $[Ru_2(CO)_2(\mu$ -CO)(μ -CHCH₂)(η -C₅Me₅)₂][BF₄] in high yield. The u-vinyl cation reacts readily with nucleophiles, giving, for $[Ru_2(CO)_2(\mu-CO)(\mu-CHEt)(\eta-C_5Me_5)_2]$ example, with methyl-lithium, and completing an homologation of μ -CHMe. Application of this approach to the µ-CHEt complex, in turn, introduces the possibility of chain-branching in addition to linear homologation.

We have shown that diruthenium μ -alkylidene ligands may be rapidly and cleanly functionalised at both the α - and β -positions through activation by oxidation-deprotonation followed by intermolecular nucleophilic attack. The method promises to provide a general route to highly reactive cationic

[†] Electrochemical studies were performed at a Pt bead electrode in dichloromethane containing 0.1 mol dm ⁻³ [Bun₄N][PF₆] as supporting electrolyte. Potentials are vs. the saturated calomel electrode; under these conditions E° for the oxidation of ferrocene is 0.48 V.

complexes of simple hydrocarbons[‡] of this and other dinuclear metal systems.

We are grateful to the S.E.R.C. for the award of a Research Studentship (N. J. F.) and for support, and to Johnson Matthey for a loan of ruthenium trichloride.

Received, 1st October 1984; Com. 1391

[‡] The related activation of a complex eight-carbon ligand has been reported (ref. 5).

References

- 1 D. L. Davies, B. P. Gracey, V. Guerchais, S. A. R. Knox, and A. G. Orpen, J. Chem. Soc., Chem. Commun., 1984, 841.
- 2 N. G. Connelly, N. J. Forrow, S. A. R. Knox, K. A. Macpherson, and A. G. Orpen, J. Chem. Soc., Chem. Commun., following communication.
- 3 M. Brookhart and M. L. H. Green, J. Organomet. Chem., 1983, 250, 395.
- 4 C. P. Casey and P. J. Fagan, J. Am. Chem. Soc., 1982, 104, 4950.
- 5 S. G. Bott, N. G. Connelly, M. Green, N. C. Norman, A. G. Orpen, J. F. Paxton, and C. J. Schaverein, J. Chem. Soc., Chem. Commun., 1983, 380.