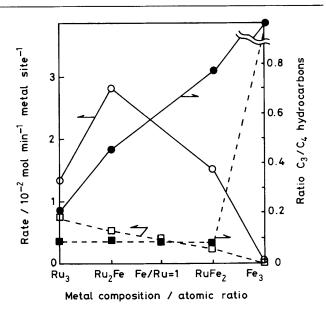
Synergistic Catalysis by Catalysts derived from $Fe_{3-x}Ru_x(CO)_{12}$ (x = 0,1,2,3) supported on γ -Al₂O₃

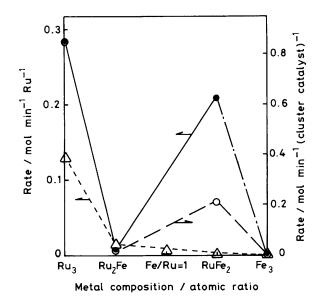
Yasuhiro Iwasawa*a and Makoto Yamadab

 Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
Department of Applied Chemistry, Faculty of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240, Japan

The catalysts derived from $Fe_{3-x}Ru_x(CO)_{12}$ (x = 0,1,2,3) supported on γ -Al₂O₃ functioned as active catalysts for CO hydrogenation, C_2H_4 self-homologation, and C_2H_6 hydrogenolysis, synergistic effects being observed particularly in the last two reactions.


Inorganic oxide-supported mixed metal clusters may provide a new method of preparation of synergistically-promoted catalysts as well as new chemistry. There have only been a few reports of supported mixed metal cluster catalysts.¹ This communication reports the properties of catalysts derived from $Fe_{3-x}Ru_x(CO)_{12}$ (x = 0,1,2,3)/ γ -Al₂O₃ in carbon monoxide hydrogenation, ethene self-homologation, and ethane hydrogenolysis.

Impregnation of $Fe_2Ru(CO)_{12}$,² $FeRu_2(CO)_{12}$,² and $Ru_3(CO)_{12}$ onto γ -Al₂O₃ was carried out by addition of γ -Al₂O₃ (150 m² g⁻¹, pretreated at 573 K for 2 h) to pentane solutions of these clusters in an Ar flow (99.9995% purity), followed by evacuation of solvent at room temperature. $Fe_3(CO)_{12}/Al_2O_3$ was obtained using a dry mixing method under vacuum.³ The catalytic reactions were conducted in a closed circulating system.


Previous work³ demonstrated that $Fe_3(CO)_{12}$ was stabilized on the γ -Al₂O₃ surface (OAl <), by the formation of a surface species $[HFe_3(CO)_{10}(OAl <)]$, with a resultant large shrinkage of the Fe₃ framework. Interactions of $Fe_2Ru(CO)_{12}$, FeRu₂(CO)₁₂, and Ru₃(CO)₁₂ with γ -Al₂O₃ also suggested the formation of the surface species, $[HFe_2Ru(CO)_{10}(OAl <)]$, $[HFeRu_2(CO)_{10}(OAl <)],$ and $[HRu_{3}(CO)_{10}(OAl <)],$ respectively.⁴ The temperature desorption spectra (TDS) of supported Fe₃ or Ru₃ carbonyl clusters exhibited negligible or very small CH_4 peaks compared with large CO, H_2 , and CO_2 peaks, whereas on the supported mixed metal clusters a large CH₄ peak at ca. 610 K was observed. The TDS of a mixture of $Fe_3(CO)_{12}$ and $Ru_3(CO)_{12}$ clusters supported on the Al₂O₃ was the same as a superposition of the spectra of the individual supported clusters.

The supported clusters were heated to 493 K under vacuum and then reduced with H_2 at 723 K for 1 h. The products of CO hydrogenation on the catalyst thus obtained from Fe₃(CO)₁₂ were CO₂ (71%) and hydrocarbons (29%; mainly CH₄) under conditions of CO = H_2 = 150 Torr and 473 K. The replacement of an Fe atom of the cluster by a Ru atom increased the activity by a factor of *ca*. 50, as well as the selectivity towards C₂—C₅ hydrocarbons by a factor of 6.2 (74.2%; alkene fraction 94%). On further replacement of Fe atoms by Ru atoms the good selectivity was retained. In contrast, conventional Fe–Ru catalysts, prepared by impregnation using an aqueous solution of Fe(NO₃)₃ and RuCl₃, produced predominantly CH₄ under identical conditions.

The activities of the Fe-Ru impregnation catalysts for C_2H_4 self-homologation at 523 K reduced with a decrease in the Ru content as shown in Figure 1. The ratio of propene/butene product was almost independent of the Ru/Fe ratios and the Fe impregnation catalyst was almost inactive. These results suggest that active Ru sites did not interact with the Fe component. However, the mixed metal cluster-derived catalysts were more active than the catalysts obtained from Ru₃(CO)₁₂ or Fe₃(CO)₁₂. The FeRu₂ cluster-derived catalyst showed the maximum activity among the catalysts derived

Figure 1. C_2H_4 Self-homologation on Al_2O_3 -supported $Ru_3(CO)_{12}$, Fe $Ru_2(CO)_{12}$, Fe $_2Ru(CO)_{12}$, and Fe $_3(CO)_{12}$ catalysts (\bigcirc, \spadesuit) , and impregnation Fe/Ru catalysts (\square, \blacksquare) at 523 K; $C_2H_4 = 33$ Torr; metal $= 6.0 \times 10^{-5}$ mol; metal/support = 1.5—3 wt%. Butene production was negligible on both types of Fe catalysts.

Figure 2. Ethane hydrogenolysis over Al₂O₃-supported Ru₃(CO)₁₂, FeRu₂(CO)₁₂, Fe₂Ru(CO)₁₂, and Fe₃(CO)₁₂ catalysts (\bigcirc ,O), and impregnated Fe/Ru catalysts (\triangle). Reaction temp. = 443 K; ethane = 25 Torr; H₂ = 50 Torr.

from the $Fe_{3-x}Ru_x(CO)_{12}$ (x = 0,1,2,3) clusters, Figure 1. The Fe₂Ru catalyst was also more active than the Ru₃ catalyst. The active sites of the mixed metal cluster catalysts consist of Fe^{II} ions and small Ru clusters chemically bonded to the Al₂O₃ surface through the surface oxygen atoms, as determined by the extended X-ray absorption fine structure studies.⁴ The steadily increasing selectivity (C₃/C₄ ratio) with increasing Fe content, Figure 1, for the supported cluster catalysts in contrast to the impregnation catalysts reflects the effect of Fe^{II} ions when adjacent to the Ru clusters.

Ethane hydrogenolysis proceeded more readily on the Ru_3 cluster-derived catalyst than on the impregnation Ru catalyst, as shown in Figure 2. The Fe catalysts were inactive. The activities of the impregnation catalysts decreased with a decrease in the Ru content of the catalyst. The Fe₂Ru cluster catalyst showed more than one order of magnitude greater activity than the FeRu₂ catalyst. Ethane hydrogenolysis obviously requires a different structure and arrangement of active sites from those for C₂H₄ self-homologation. The Ru-co-ordination number around a Ru atom was twice as large in the FeRu₂ catalyst than in the Fe₂Ru catalyst.

The origin of the synergistic effects observed with the

 $Fe_2Ru(CO)_{12}$ and $FeRu_2(CO)_{12}$ -derived catalysts is unclear at present, but the action of these catalysts is significantly different from that observed on the conventional impregnation catalysts.

Received, 5th February 1985; Com. 161

References

- J. R. Anderson and D. E. Mainwaring, J. Catal., 1974, 35, 162; M. Ichikawa, *ibid.*, 1979, 56, 127; 1979, 59, 67; R. Pierantozzi, K. J. McQuade, B. C. Gates, M. Wolf, H. Knözinger, and W. Ruhmann, J. Am. Chem. Soc., 1979, 101, 5436; J. R. Budge, J. P. Scott, and B. C. Gates, J. Chem. Soc., Chem. Commun., 1983, 342; J. R. Budge and B. C. Gates, Pan-Pac. Synfuels Conf., 1982, 1, 204; A. Choplin, M. Leconte, J. M. Basset, S. G. Shore, and W. L. Hsu, J. Mol. Catal., 1983, 21, 389; L. Bruce, G. Hope, and T. W. Turney, React. Kinet. Catal. Lett., 1982, 20, 175.
- 2 D. B. W. Yawney and F. G. A. Stone, J. Chem. Soc. A, 1969, 502.
- 3 Y. Iwasawa, Y. Yamada, S. Ogasawara, Y. Sato, and H. Kuroda, Chem. Lett., 1983, 621.
- 4 K. Asakura, M. Yamada, Y. Iwasawa, and H. Kuroda, unpublished results.