Electroactive Thin Films from the Anodic Electropolymerisation of Iron(II) and Ruthenium(II) Tris(*N*-bipyridylpyrrole) Complexes

Jeffrey G. Eaves, Hugh S. Munro, and David Parker*

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.

A platinum electrode was coated with an electroactive polypyrrole film containing tris(bipyridyl)-iron(II) or -ruthenium(II) redox centres and the film surface composition has been analysed by ESCA.

The electropolymerisation of substituted pyrroles has received considerable attention recently.¹⁻⁴ Poly(*N*-alkylpyrrole) films, in which the alkyl substituent contains a redox centre, are electroactively stable for potential ranges in which the polymer may be expected to be in either its insulating or conducting form.^{1,2} We report the synthesis and anodic electropolymerisation of iron(II) and ruthenium(II) complexes of 5-(*N*-pyrrolylmethyl)-2,2'-bipyridine (1c) and an ESCA analysis of the resulting thin films.

Reaction of equimolar amounts of 5-methyl-2,2'bipyridine⁵ (1a) with N-bromosuccinimide in tetrachloromethane in the presence of one mole percent 2,2'-azo-bis(2methylpropanonitrile), gave 5-bromomethyl-2,2'-bipyridine (1b). Direct reaction of (1b) with pyrrole via phase transfer catalysis,⁶ using tetrahexylammonium bromide in 1:1 dichloromethane-50% aqueous sodium hydroxide, gave a colourless solid which was purified by chromatography on alumina to give (1c) in 75% overall yield [m.p. 88-89 °C, m/z(chemical ionisation, NH₃) 236 (M^{\bullet} + 1)]. Tris(bipyridyl) complexes from (1c) and iron(II) and ruthenium(II) were prepared using standard procedures.^{7,8†}

Polymeric films were grown electrochemically in argonpurged anhydrous acetonitrile [0.1 \times in tetrabutylammonium perchlorate (TBAP) or tetrafluoroborate (TBAT)] by cycling the applied potential at a platinum electrode between -0.2

and +1.5 V,‡ (Figure 1). A pre-wave to the major M²⁺/M³⁺ anodic peak was observed for the first few cycles which merged into the major peak subsequently. Such behaviour has previously been noted for poly{[Ru(bpy)₂L₂]²⁺} films where L was a pyridine *N*-substituted pyrrole (bpy = bipyridine).⁹ The modified electrode was thoroughly washed and transferred to clean solvent and electrolyte. Cyclic voltammetry revealed that the isolated films exhibited a stable M²⁺/M³⁺ couple related to that of the monomer.

For poly{[(1c)₃Fe]²⁺} films grown over twenty cycles, differences were observed by varying the supporting electrolyte. Films formed in TBAP showed a linear dependence of peak current with sweep-rate v from 0 to 50 mV s⁻¹.

[†] New compounds gave satisfactory analytical and spectroscopic data, consistent with their structures.

[‡] Potentials are given relative to the saturated calomel electrode; under the experimental conditions used, $E_{\frac{1}{2}}$ ferrocene/ferricinium = 0.42 V.

Figure 1. Cyclic voltammogram depicting the growth of the Fe²⁺/Fe³⁺ peak during film formation from 1.75×10^{-4} M [Fe(1c)₃]²⁺(BF₄)₂ in MeCN/0.1 M Bu₄NClO₄; sweep-rate v = 50 mV s⁻¹, electrode diameter = 1.70 mm; $E_{4}^{\circ} = 1.15$ V.

Figure 2. Fe_{2p} core level ESCA spectrum of poly{[(1c)₃Fe]²⁺}; FWHM Fe_{2p} 3/2 = 1.3 eV. Binding energies are referenced to the main C_{1s} photoionisation peak at 285.0 eV.

Using a sweep-rate of 10 mV s⁻¹ a peak separation of 15 mV was observed with an apparent molar coverage, $\Gamma_{app.}$, of 1.3×10^{-8} mol cm⁻². Films grown in TBAT exhibited a linear dependence of i_{pa} and i_{pc} with sweep-rate up to 150 mV s⁻¹, a peak separation of 10 mV at 10 mV s⁻¹, and $\Gamma_{app.}$ of 4.7 × 10^{-9} mol cm⁻². When [Ru(bpy)₃]²⁺ units are incorporated into polymeric films, it has been established that deviations from linearity become progressively large with increasing film thickness.¹⁰ Negligible loss of integrated peak current was observed after 200 cycles between -0.2 and +1.5 V at 50 mV s⁻¹, and only an 8% loss of integrated peak current was observed after storing the dried modified electrode in air for 24 hours.

[(1c)₃Ru]²⁺ has been similarly polymerised and preliminary electrochemical studies reveal a square-root dependence of sweep-rate with peak current for sweep-rates greater than 25 mV s⁻¹. For a film grown over twenty cycles with 7.3 × 10^{-4} M monomer in TBAP, a peak separation of 25 mV was observed ($\nu = 25$ mV s⁻¹), with $\Gamma_{app.} = 1.1 \times 10^{-8}$ mol cm⁻². The half-wave potential was +1.34 V.

ESCA analyses were performed on films prepared on 1.8 cm^2 platinum foils. The Fe_{2p} core level spectrum of

 $poly\{[(1c)_3Fe]^{2+}\}$ formed in TBAP is shown in Figure 2. No multiplet splitting was observed, consistent with a film in which all of the iron is present in a low-spin d⁶ configuration.¹¹ Using experimentally predetermined elemental sensitivity ratios, it is possible to evaluate the concentration of ClO_4^- or BF_4^- ions in the film from measurements of the N_{1s}/Cl_{2p} and N_{1s}/F_{1s} peak area ratios. Films formed in TBAT were essentially undoped since the N/F stoicheiometry indicated 4.5 nitrogen atoms for each tetrafluoroborate counterion. Such behaviour is in accord with that observed for poly(Nalkylpyrrole) in which the alkyl substituent is bulky.¹² For films grown in TBAP electrolyte, no B_{1s} or F_{1s} was detected. The N/Cl stoicheiometry was 3.0 indicating one positive charge for each monomeric unit. No high binding energy N_{1s} signal was observed indicating the absence of tetrabutylammonium cations. Moreover since a higher binding energy Fe_{2p} peak was not observed the possibility of a d⁵Fe³⁺ complex charge compensating for the dopant perchlorate ions may be discounted. The oxidation reaction forming the polypyrrole chains in TBAP thus involves one positive charge for every three pyrrole rings.^{13,14}§

Although the cathodic electropolymerisation of some tris-(vinylbipyridyl) complexes has been reported,¹⁵ this work represents a unique example of the anodic electropolymerisation of $[M(bpy)_3]^{2+}$ complexes. Further investigations of the polymeric films are in progress, exploring their potential as photosensitising coatings for semi-conductor electrodes and their possible use in molecular electronic devices.¹⁶

We thank the S.E.R.C. for a studentship (J. G. E.) and the Royal Society for support.

Received, 13th February 1985; Com. 187

References

- 1 A. Diaz and J. Castillo, J. Chem. Soc., Chem. Commun., 1980, 397.
- 2 K. Okabayashi, O. Ikeda, and H. Tamura, J. Chem. Soc., Chem. Commun., 1983, 684.
- 3 R. A. Bull, F. R. Fan, and A. J. Bard, J. Electrochem. Soc., 1983, 130, 1636.
- 4 G. Bidan, A. Deronzier, and J.-C. Moutet, J. Chem. Soc., Chem. Commun., 1984, 1185.
- 5 T. L. J. Huang and D. G. Brewer, Can. J. Chem., 1981, 59, 1690.
- 6 N. C. Wang, K. E. Teo, and H. J. Anderson, Can. J. Chem., 1977, 55, 4112.
- 7 B. P. Sullivan, D. J. Salmon, and T. J. Meyer, *Inorg. Chem.*, 1978, 17, 3374.
- 8 F. H. Burstall and R. S. Nyholm, J. Chem. Soc., 1952, 3570.
- 9 G. Bidan, A. Deronzier, and J.-C. Moutet, Nouv. J. Chim., 1984, 8, 501.
- 10 P. K. Ghosh and A. J. Bard, J. Electroanal. Chem., 1984, 169, 113.
- 11 D. T. Clark and D. B. Adams, Chem. Phys. Lett., 1971, 10, 121.
- 12 A. F. Diaz, J. Castillo, K. K. Kamazawa, J. A. Logan, M. Salmon, and O. Fajardo, J. Electroanal. Chem., 1982, 133, 233.
- 13 W. R. Salaneck, R. Erlandsson, J. Prejza, I. Lundström, and D. Inganäs, Synthetic Metals, 1983, 5, 125.
- 14 P. Pfluzer and G. B. Street, J. Chem. Phys., 1984, 80, 544.
- 15 H. D. Abruna, P. Denisevich, M. Umana, T. J. Meyer, and R. W. Murray, J. Am. Chem. Soc., 1981, 103, 1; P. Denisevich, H. D. Abruna, C. R. Leidner, T. J. Meyer, and R. W. Murray, Inorg. Chem., 1982, 21, 2153; P. G. Pickup, W. Kutner, C. R. Leidner, and R. W. Murray, J. Am. Chem. Soc., 1984, 106, 1991.
- 16 P. G. Pickup and R. W. Murray, J. Electrochem. Soc., 1984, 131, 833; G. P. Kittlesen, H. S. White, and M. S. Wrighton, J. Am. Chem. Soc., 1984, 106, 7389.

[§] The ruthenium containing polymer is less amenable to ESCA analysis as the most intense ruthenium photoionisation peak occurs close to the C_{1s} signal.