The Radical Anion of 1,8-DiphenyInaphthalene: Re-examination of E.S.R. and ENDOR Spectra

Fabian Gerson,* René Heckendorn, and Reinhart Möckel

Institut für Physikalische Chemie der Universität Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland

At variance with the statement made in a previous paper, the bulk of the π -spin population in the radical anions of 1,8-diphenyl- and 1,8-bis(tolyl)-naphthalene is located in the naphthalene moiety.

Three years ago, the results of an ENDOR study were reported for the radical anions of 1,8-diphenyl- (1), 1,8bis(perdeuteriophenyl)- $[{}^{2}H_{10}]$ -(1), and 1,8-bis(*p*-tolyl)naphthalene (2).¹ The authors concluded that the π -spin population in these radical anions is markedly shifted from the naphthalene moiety to the phenyl substituents, owing to the transannular 'paracyclophane-like' interaction between the benzene rings which renders their LUMO comparable in energy to the LUMO of naphthalene. This conclusion, which we now show is erroneous, was quoted twice in a recent review.²

We have re-examined the e.s.r. and ENDOR spectra of the radical anions $(1 \cdot -)$, $[^{2}H_{10}] \cdot (1 \cdot -)$, and $(2 \cdot -)$. In Table 1, the hyperfine data obtained in this work are compared with those reported for $(1 \cdot -)$ and $(2 \cdot -)$ in the literature.¹ The striking differences between the two sets of data originate from the previous failing to observe the ENDOR signals associated with the largest proton coupling constant (4,5-positions). The revised values are consistent with the bulk of the π -spin population being located in the naphthalene moiety, as anticipated from the substantially less negative half-wave reduction potential of naphthalene ($E_{1/2} - 2.5$ V vs. standard calomel electrode) relative to [2.2]paracyclophane ($E_{1/2} - 3.0$ V).³ The corresponding potential of (1) ($E_{1/2} - 2.3$ V) complies with the expected effect of diphenyl-substitution on the naphthalene π -system.

Further reduction of (1^{-}) , $[^{2}H_{10}]$ - (1^{-}) , and (2^{-}) leads to the dianions (1^{2-}) , $[^{2}H_{10}]$ - (1^{2-}) , and (2^{2-}) and subsequently

Table 1. Proton coupling constants, in mT, for the radical anions (1^{-}) and (2^{-}) .^a The values in parentheses are those of ref. 1.

Position	(1 .⁻)	(2 ⋅−)
2,7	0.261 (0.059)	0.250 (0.056)
3,6	0.060 (0.059)	0.070^{d} (0.056)
4,5	0.459 (0.263)	0.456 (0.250)
0,0'	{0.096 ^b (0.096) ^c }0.057 ^b (0.059) ^c	0.098 (0.100)°
m,m'	$\left\{ \begin{array}{c} 0.037 & (0.037) \\ 0.035^{\text{b}} & (0.034)^{\text{c}} \\ 0.019^{\text{b}} & (0.018)^{\text{c}} \end{array} \right\}$	$0.034 (0.033)^{\circ}$ $0.025 (0.026)^{\circ}$
р	0.114 ^b (0.115)	0.113° (0.112)

^a Solvent: 1,2-dimethoxyethane; counterion: K⁺; temperature: 193 K. Experimental error: ± 0.001 mT. ^b Replaced by deuteron coupling constants in the spectra of [²H₁₀]-(1·⁻). ^c Not assigned in ref. 1. ^d Assignment uncertain; may be reversed. ^e Coupling constant of the six methyl protons.

to the radical trianions $(1\cdot^{3-})$, $[{}^{2}H_{10}]$ - $(1\cdot^{3-})$, and $(2\cdot^{3-})$. It is noteworthy that in these trianions the π -spin population resides mainly in the phenyl substituents. A full account of the e.s.r. and ENDOR studies on the radical anions and trianions of (1), $[{}^{2}H_{10}]$ -(1), and (2) will be given elsewhere,⁴ along with the results of the analogous investigations on derivatives bridged in the *para*-positions.

This work was supported by the Swiss National Science Foundation.

Received, 2nd January 1985; Com. 005

References

- 1 F. Nemoto, A. Takaoka, and K. Ishizu, Chem. Phys. Lett., 1982, 86, 401.
- 'Electron Spin Resonance,' (Specialist Periodical Report), Royal Society of Chemistry, 1983, Vol. 8, Ch. 4, p. 74 and Ch. 8, p. 295.
 F. Gerson, H. Ohya-Nishiguchi, and Ch. Wydler, *Angew. Chem.*,
- F. Gerson, H. Ohya-Nishiguchi, and Ch. Wydler, Angew. Chem., 1976, 88, 617; Angew. Chem., Int. Ed. Engl., 1976, 15, 552; R. Jund, P. Lemoine, and M. Gross, Angew. Chem., 1982, 94, 312; Angew. Chem., Int. Ed. Engl., 1982, 21, 305.
- 4 F. Gerson, R. Heckendorn, R. Möckel, and F. Vögtle, *Helv. Chim.* Acta, to be published.