Capto-dative Stabilisation in Amino-substituted Radicals

lain MacInnes,^a John C. Walton,*a and Derek C. Nonhebel^b

^a Department of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.

^b Department of Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.

The rotational barriers about the C–N bonds in aminoalkyl radicals, $H_2N\dot{C}HR$, were found to be significantly greater when R is an acceptor group than when R is an alkyl group; this is good evidence for capto-dative stabilisation of the ground state radicals.

The proposal¹ that radicals would be stabilised by the combined interaction of donor and acceptor substituents at the same centre has been vigorously promoted by Viehe and co-workers in recent years.²⁻⁴ This effect, termed 'captodative' (C-D) stabilisation by Viehe had previously been suggested, though under different names, by several other groups of workers.^{5–7} Despite the wealth of applications, quantitative evidence in support of the C-D effect has been noticeably sparse. Some theoretical treatments provided supporting evidence,⁸ while others indicated negligible C-D stabilisation.^{9,10} Kinetic studies of the addition of alkyl radicals to C-D substituted alkenes yielded ambiguous results.¹¹ Thermochemical studies on the decomposition of 2,3-dimethoxy-2,3-diphenylsuccinonitrile by Rüchardt and coworkers failed to find any C-D effect.¹² The rates of dimerisation of C-D substituted methyl radicals were shown to be diffusion controlled; thus indicating the absence of kinetic stabilisation.¹³ This does not, of course, preclude the possibility of thermodynamic stabilisation.14

Recently, Sustmann and co-workers determined the barrier to internal rotation in the 1-cyano-1-methoxyallyl radical (1).¹⁵ In the transition state (2), *i.e.* on 90° rotation about the C(1)-C(2) bond, the unpaired electron is confined to the C-D substituted moiety. Thus, any stabilising C-D effect should cause a lowering in the transition state energy and hence give rise to *lower* rotational barriers in comparison with unstabilised allyl radicals. Sustmann *et al.* found the rotation barrier of (1) to be *ca.* 3 kcal mol^{-1†} lower than that of analogous radicals without C-D substitution.¹⁵

Aminoalkyl radicals (3) containing an acceptor substituent (R) should also be subject to C-D stabilisation. In the transition state for rotation about the C–N bond (4) the unpaired electron cannot be delocalised onto nitrogen and any C-D stabilisation is lost. It follows that if C-D stabilisation is significant the barriers to rotation about the C–N bonds in C-D substituted aminoalkyl radicals should be *greater* than those of analogous radicals without C-D substitution. We have developed an e.s.r. exchange broadening technique for determining rotational barriers in radicals with amino substituents^{16,17} and we have now applied this to several substituted aminoalkyl radicals, some of which could exhibit C-D stabilisation.

The aminoalkyl radicals (3, R = Me, Pr^i , Bu^t , and CO_2Bu^t) were generated by photolysis of solutions of the appropriate amine in di-t-butyl peroxide, equations (1) and (2), in the

† 1 kcal = 4.18 kJ.

cavity of the e.s.r. spectrometer. In each case hydrogen abstraction occurred mainly at C_{α} and (3) was the only observable radical. For (3, R = alkyl) well defined e.s.r. spectra were obtained which showed non-equivalent hyperfine splittings (h.f.s.) from the two amino hydrogens (Table 1). These amino hydrogen h.f.s. $[a(H_N)]$ increased strongly with increasing temperature; a(N) showed a small increase with increasing temperature but $a(H_{\alpha})$ was virtually temperature independent. The spectra from the alkyl substituted radicals (3, R = Me, Pr^i , Bu^i) all exhibited exchange broadening owing to rotation about the C-N bond in the temperature range 230-310 K with coalescence at ca. 260 K. Spectra were simulated assuming a two jump model using a modified version of Heinzer's program.¹⁸ The rotational barriers, found by comparison of the experimental and simulated spectra are given in Table 2; in each case the measured pre-exponential factors were close to the 'normal' value of 1013 s⁻¹.

The C-D radical $(3, R = CO_2Bu^t)$ also gave a well resolved spectrum (h.f.s. in Table 1) but in this case the amino hydrogen h.f.s. decreased with increasing temperature; this probably indicates they have negative signs.¹⁷ Exchange line broadening was observed at much higher temperatures (400-470 K) with coalescence at ca. 470 K. Spectra could not be studied above 470 K because of boiling and decomposition and hence comparison with simulations was restricted to the region below coalescence; this is the main reason for the larger error limits in this case (Table 2). The C-N bond rotational barriers, V_0 , Table 2, in the three alkyl substituted radicals are all identical to within the experimental error. The magnitude of the barrier (ca. 7.5 kcal mol^{-1}) is large in comparison with analogous C-C bond rotational barriers and this is the expected consequence of spin delocalisation onto nitrogen.¹⁷ The barrier is evidently unaffected by the bulk of the alkyl substituent. The rotation barriers in the C-D radicals are all significantly greater than those of the aminoalkyl radicals. The increase, which is a measure of the C-D stabilisation, varies from 3 kcal mol⁻¹ for (3, $R = C \equiv CH$) (the weakest acceptor) to ca. 7 kcal mol⁻¹ for (3, $R = CO_2Bu^t$). In the latter case

Table 1. E.s.	. parameters	for aminoalky	yl radicals H ₂	2NCHR (3).4
---------------	--------------	---------------	----------------------------	-------------

R	Temp./K	$a(H_N)$	$a(H_N)$	<i>a</i> (N)	$a(H_{\alpha})$	a(H, other)
Me	240	2.5	5.5	4.4	14.7	20.7 (3H)
Me ₂ CH	H 240	2.1	5.6	4.5	14.7	20.2 (1H)
Me ₃ C	240	2.0	6.2	4.3	14.6	
BurOC	CO 240	4.6	5.1	6.0	13.3	

^a H.f.s. in G, $1G = 10^{-4}$ T.

Table 2. C–N Bond rotation barriers in aminoalkyl radicals, $H_2N\dot{C}HR$ (3).

R	$V_{\rm o}/{\rm kcal}{\rm mol}^{-1}$	$\log A/s^{-1}$
Me	7.6 ± 0.4	13.2 ± 0.4
Me ₂ CH	7.3 ± 0.4	13.1 ± 0.4
Me ₃ C	7.5 ± 0.2	13.4 ± 0.4
ButOCO	14.9 ± 1.2	13.2 ± 0.5
HC=C	10.5 ± 1.2^{a}	13.8 ± 0.7 a
N≘C	11 ±2 ª	
^a From reference 1	7.	

intramolecular hydrogen bonding (5) may contribute to the large barrier. Stabilisation of this magnitude is in good agreement with that found for the rotation barrier in the C-D substituted allyl radical $(1)^{15}$ and with the results of *ab initio* calculations.⁸

$$Bu^{t}OOBu^{t} \xrightarrow{hv} 2Bu^{t}O \cdot$$
 (1)

$$Bu^{t}O \cdot + H_{2}NCH_{2}R \longrightarrow H_{2}N\dot{C}HR + Bu^{t}OH \qquad (2)$$
(3)

In conclusion, C-D substitution in aminoalkyl radicals lowers the ground state energy and hence the C-N bond rotational barrier is increased. The main effect of C-D substitution in allyl radicals is to decrease the transition state energy for C(1)-C(2) bond rotation and hence the rotational barrier is decreased. These two results are therefore complementary and reinforce the conclusion that C-D substitution leads to significant thermodynamic stabilisation in radicals. We thank the S.E.R.C. for financial support, and Professor J. M. Tedder and a referee for some helpful suggestions.

Received, 25th February 1985; Com. 257

References

- 1 M. J. S. Dewar, J. Am. Chem. Soc., 1952, 74, 3353.
- 2 H. G. Viehe, R. Merenyi, L. Stella, and Z. Janousek, Angew. Chem., Int. Ed. Engl., 1979, 18, 917.
- 3 A. de Mesmaeker, L. Vertommen, R. Merenyi, and H. G. Viehe, *Tetrahedron Lett.*, 1982, 69.
- 4 S. Mignani, M. Beaujean, Z. Janousek, R. Merenyi, and H. G. Viehe, *Tetrahedron*, 1981, **37**, 111.
- 5 R. W. Baldock, P. Hudson, A. R. Katritzky, and F. Sati, J. Chem. Soc., Perkin Trans. 1, 1974, 1422, 1427.
- 6 A. T. Balaban, M. T. Capriou, N. Negoita, and R. Bairou, *Tetrahedron*, 1977, 33, 2249.
- 7 H. G. Aurich and E. Deuschle, Liebigs Ann. Chem., 1981, 719.
- 8 D. Crams, T. Clark, and P. v. R. Schleyer, *Tetrahedron Lett.*, 1980, **21**, 3681.
- 9 G. Leroy, D. Peeters, C. Wilante, and M. Khalil, *Nouv. J. Chim.*, 1980, **4**, 403.
- 10 G. Leroy, D. Peeters, and C. Wilante, J. Mol. Struct., 1982, 88, 217.
- 11 B. Giese and J. Meixner, results quoted in reference 2.
- 12 M. Zamkanei, J. H. Kaiser, H. Birkhofer, H. D. Bekhaus, and Ch. Rüchardt, Chem. Ber., 1983, 116, 3216.
- 13 H-G. Korth, R. Sustmann, R. Merenyi, and H. G. Viehe, J. Chem. Soc., Perkin Trans. 2, 1983, 67.
- 14 D. Griller and K. U. Ingold, Acc. Chem. Res., 1976, 9, 13.
- 15 H-G. Korth, P. Lommes, and R. Sustmann, J. Am. Chem. Soc., 1984, 106, 663.
- 16 D. Griller, D. C. Nonhebel, and J. C. Walton, J. Chem. Soc., Chem. Commun., 1982, 1059.
- 17 D. Griller, D. C. Nonhebel, and J. C. Walton, J. Chem. Soc., Perkin Trans. 2, 1983, 1373.
- 18 J. Heinzer, Quantum Chemistry Program Exchange, No. 209, University of Indiana, Indiana, 1972.