The Solution Structure of [Rh(COMe)(CO)₂¹₃]⁻ and the Absence of Methyl Migration in $[Rh_2(COME)_2(CO)_2I_6]^{2-}$

Alexander G. Kent,^a Brian E. Mann,*^b and Christopher P. Manuel^b

^a*B.P. Chemicals Limited, Research and Development Department, Hull Division, Salt End, Hull HU72 8DS, U.K.* **^b***Department of Chemistry, The University, Sheffield S3 7HF, U.K.*

The observation of inequivalent CO groups at -130 °C for $[Rh(COME)(CO)_2]_3]$ ⁻ is due to restricted rotation about the Rh-COMe bond with **AG* 7.6** kcal mol-l,t 2J(13CO,13CO) 59 **Hz** showing that the carbonyls are mutually *trans;* the lack of ¹³COMe/¹²CO exchange in $\text{[Rh}_2\text{(^{13}CO}$ ¹³CH₃)₂(¹²CO)₂I₆]²⁻ demonstrates that its preparation from $[Rh(13CH₃)(12CO)(13CO)]₃]$ is not reversible.

The $[Rh(CO)_2I_2]$ -/I- catalysed reaction of methanol with carbon monoxide to give acetic acid is now a major industrial process.^{1,2} Apart from the pioneering work of Forster,² very little attention has been paid to the mechanism of this reaction. The only intermediate that has been isolated from the reaction is $[\text{Me}_3\text{PhN}]_2[\text{Rh}_2(\text{COMe})_2(\text{CO})_2\text{I}_6]$, for which the crystal structure has been established.^{3,4} Little work appears to have been done on the chemisty of this acyl intermediate, although a number of related rhodium-acyls have been examined *.5--8* Most acyl-rhodium complexes readily isomerise to the alkyl rhodium carbonyl complex, and in favourable cases, the equilibrium can be investigated. Thus for $RhCl_2(COMe)(PAr_3)_2$ and $RhMeCl_2(CO)(PAr_3)_2$ the equilibrium constant has been determined, 5 and for $[\hat{R}hCl(COMe)(PMe₂Ph)₃]$ ⁺ the rate was determined.⁷ It has been recently shown that $Rh(COMe)I_2(PPh_3)_2$ decomposes with elimination of methyl iodide to form $Rh(CO)(PPh₃)₂$.⁹ This and similar work implies the *reversible* formation of

 \dagger kcal = 4.184 kJ.

Figure 1. A partial ¹³C n.m.r. spectrum of $[Rh(COME)(^{13}CO)_2I_3]^{-}$, **(II), in CD₂Cl₂-CHFCl₂, 1 : 1, at** -130 **°C (¹³CO region): (a)** *ca.* **80%** enriched in ^{13}CO , (b) $ca. 40\%$ enriched in ^{13}CO .

 $[RhMe(CO)₂I₃]$ from $[Rh₂(COMe)₂(CO)₂I₆]²⁻$, but in contrast $[Rh(COMe)(CO)_2I_3]$ ⁻ decomposes to give acetyl iodide.²

When $[Rh_2({}^{13}COMe)_2({}^{13}CO)_2I_6]^{2-}$, (I), \ddagger is treated with ¹³CO, then [Rh(¹³COMe)(¹³CO)₂I₃]⁻ is formed. The ¹³C n.m.r. spectrum in CD₂Cl₂ at -30 °C shows ¹³COMe at δ 216.42, ¹J(¹⁰³Rh,¹³C) 18 Hz and ¹³CO at δ 177.11, $1J(103Rh, 13C)$ 54 Hz. On cooling to -90 °C, the ¹³COMe signal remains sharp, but there is extreme broadening of the ¹³CO signal. In CD₂Cl₂-CHFCl₂, 1:1, at -130 °C, the spectrum shows one ¹³COMe signal at δ 216.60, ¹J(¹⁰³Rh,¹³C) 18 Hz and two ¹³CO signals at δ 177.79 and 173.03, both triplets, with underlying doublets; $1J(103Rh, 13C)$ = $2J(^{13}C)^{13}C = 59$ Hz, see Figure 1. The attribution of one 59 Hz coupling to $2J(13C,13C)$ is confirmed by treating $[Rh_2(13COMe)_2(13CO)_2I_6]^2$ with 12CO, when predominantly $[Rh^{13}COMe)(^{13}CO)(^{12}CO)I_3]$ ⁻ is formed, and the ¹³CO n.m.r. signal consists of two doublets, with underlying triplets. The value of 59 Hz for $2J(13C,13C)$ demonstrates a trans carbonyl arrangement, (11). **As** many rhodium acyl complexes are 5-co-ordinate it is possible that this compound is also square-pyramidal with the vacant site trans to COMe. The carbonyl inequivalence arises from restricted rotation about the Rh-COMe bond with ΔG^{\ddagger} 7.6 kcal mol⁻¹.[†] This compound has been previously reported, 3 but a fac-structure, (III), was suggested. $[Rh(13COMe)(13CO)_2I_3]$ slowly decomposes at room temperature to give $[Rh(13CO),I_2]$ and various organic acetyl species. It is improbable that (11) with its trans-carbonyls will decompose directly to give $[Rh(CO)₂I₂]$ ⁻ with *cis*-carbonyls. Therefore, the mechanism probably consists of isomerisation of (11) to (111), which rapidly loses CH₃COI, and is not detected.

When N_2 is passed through a solution of $[Rh(COME) (CO)_{2}I_{3}$]-, $[Rh_{2}(COMe)_{2}(CO)_{2}I_{6}]^{2}$ - is generated. Hence

 \ddagger Rh₂(CO)₄Cl₂ in CH₂Cl₂ readily exchanges with ¹³CO. Subsequent reaction with MeI, AsPh₄Cl, and LiI yields $[AsPh₄]₂[Rh₂ (13$ COMe)₂(13 CO)₂I₆], ref. 3.

repeated treatment§ of $\left[\text{Rh}_2\left(\frac{13\text{CO}}{13\text{CH}_3}\right)\left(\frac{13\text{CO}}{2}\right)\right]$ with alternately ¹²CO and N_2 generates $[Rh_2$ ⁽¹³CO¹³CH₃)₂- $(12CO)_{2}I_{6}$]²⁻. The ¹³CH₃ n.m.r. spectrum has a doublet, δ 46.07, ¹J(¹³C,¹³C) 35 Hz with a singlet due to the ¹³CH₃¹²CO group, and provides a monitor of the $12CO$ 13CH₃: 13CO¹³CH₃ ratio. After 1 week in CH₂Cl₂ this ratio does not change, remaining at 1 : **4** as it was in the initial $[Rh_2 (^{13}CO \quad ^{13}CH_3)_2(^{13}CO)_2I_6]^{2-}$. Therefore $[Rh_2(^{13}CO 13CH_3$)₂ ($12CO$)₂I₆]²⁻ does not give [Rh($13CH_3$)($12CO$)- $(13CO)I₃$ at a significant rate to permit $12C/13C$ scrambling, yielding $[Rh_2(12CO13CH_3)_2(13CO)_2I_6]^{2-}$, even though the formation of $[Rh_2(COCH_3)_2I_6]^{2-}$ from $[Rh(CO)_2I_2]^{-}$ and CH₃I is believed to go *via* $\left[\text{Rh}(CH_3)(CO)_2I_3\right]^{-2}$ This is surprising in view of the facile formation of rhodium-methyls from other rhodium-acetyls, and indicates an unusual chemistry for $\left[\text{Rh}_2(\text{COCH}_3)_2(\text{CO})_2\text{I}_6\right]^2$.

We thank the S.E.R.C. for financial support to C. P. M. and access to the Bruker WH400 n.m.r. spectrometer in Sheffield.

Received, *22nd* February *1985; Corn.* 235

References

- **1** P. M. Maitlis, *New Scientist,* 1983, **98,** *208.*
- *2* D. Forster, *Adv. Organomet. Chem.,* 1979, **17,** 255.
- 3 **D.** Forster, *JAm. Chem.* **SOC.,** 1976, **98,** 846.
- 4 G. W. Adamson, J. J. Daly, and D. Forster, *J. Orgunomet. Chem.,* 1974, **71,** C17.
- *5* D. L. Egglestone, M. C. Baird, C. J. L. Lock, and G. Turner, *J. Chem.* **SOC.,** *Dalton Trans.,* 1977, 1576.
- 6 I. C. Douek and G. Wilkinson, *J. Chem.* **SOC.** *A,* 1969, 2604.
- 7 M. A. Bennett, J. C. Jeffery, and G. B. Robertson, *Inorg. Chem.*, 1981,20, 323.
- 8 C.-H. Cheng, B. D. Spivack, and R. Eisenberg, *J. Am. Chem. Soc.,* 1977,99, 3003.
- 9 **A.** R. Siedle, R. **A.** Newmark, and L. H. Pignolet, *Organometullics,* 1984, *3,* 855.

§ Synthesised as $[AsPh_4]_2[Rh_2({}^{13}COMe)_2({}^{13}CO)_2I_6]$, using ${}^{13}CH_3I$.