The Solution Structure of $[Rh(COMe)(CO)_2I_3]^-$ and the Absence of Methyl Migration in $[Rh_2(COMe)_2(CO)_2I_6]^{2-1}$

Alexander G. Kent,^a Brian E. Mann,^{*b} and Christopher P. Manuel^b

^a B.P. Chemicals Limited, Research and Development Department, Hull Division, Salt End, Hull HU12 8DS, U.K. ^b Department of Chemistry, The University, Sheffield S3 7HF, U.K.

The observation of inequivalent CO groups at -130 °C for [Rh(COMe)(CO)₂I₃]⁻ is due to restricted rotation about the Rh–COMe bond with ΔG^{\ddagger} 7.6 kcal mol⁻¹,† ²J(¹³CO,¹³CO) 59 Hz showing that the carbonyls are mutually *trans*; the lack of ¹³COMe/¹²CO exchange in [Rh₂(¹³CO¹³CH₃)₂(¹²CO)₂I₆]²⁻ demonstrates that its preparation from [Rh(¹³CH₃)(¹²CO)(¹³CO)I₃]⁻ is not reversible.

The $[Rh(CO)_2I_2]^{-/I^-}$ catalysed reaction of methanol with carbon monoxide to give acetic acid is now a major industrial process.^{1,2} Apart from the pioneering work of Forster,² very little attention has been paid to the mechanism of this reaction. The only intermediate that has been isolated from the reaction is [Me₃PhN]₂[Rh₂(COMe)₂(CO)₂I₆], for which the crystal structure has been established.^{3,4} Little work appears to have been done on the chemisty of this acyl intermediate, although a number of related rhodium-acvls have been examined.⁵⁻⁸ Most acyl-rhodium complexes readily isomerise to the alkyl rhodium carbonyl complex, and in favourable cases, the equilibrium can be investigated. Thus for $RhCl_2(COMe)(PAr_3)_2$ and $RhMeCl_2(CO)(PAr_3)_2$ the equilibrium constant has been determined,5 and for $[\hat{R}hCl(COMe)(PMe_2Ph)_3]^+$ the rate was determined.⁷ It has been recently shown that Rh(COMe)I₂(PPh₃)₂ decomposes with elimination of methyl iodide to form $RhI(CO)(PPh_3)_2$.9 This and similar work implies the *reversible* formation of

+ kcal = 4.184 kJ.

Figure 1. A partial ¹³C n.m.r. spectrum of $[Rh(COMe)({}^{13}CO)_2I_3]^-$, (II), in CD₂Cl₂-CHFCl₂, 1:1, at -130 °C ({}^{13}CO region): (a) *ca.* 80% enriched in ¹³CO, (b) *ca.* 40% enriched in ¹³CO.

 $[RhMe(CO)_2I_3]^-$ from $[Rh_2(COMe)_2(CO)_2I_6]^{2-}$, but in contrast $[Rh(COMe)(CO)_2I_3]^-$ decomposes to give acetyl iodide.²

When $[Rh_2({}^{13}COMe)_2({}^{13}CO)_2I_6]^{2-}$, (I),‡ is treated with ¹³CO, then $[Rh(^{13}COMe)(^{13}CO)_2I_3]^-$ is formed. The ¹³C n.m.r. spectrum in CD₂Cl₂ at -30 °C shows ¹³COMe at δ 216.42, ${}^{1}J({}^{103}Rh, {}^{13}C)$ 18 Hz and ${}^{13}CO$ at δ 177.11, $^{1}J(^{103}\text{Rh},^{13}\text{C})$ 54 Hz. On cooling to -90 °C, the $^{13}\text{COMe}$ signal remains sharp, but there is extreme broadening of the ¹³CO signal. In CD₂Cl₂-CHFCl₂, 1:1, at -130 °C, the spectrum shows one ¹³COMe signal at δ 216.60, ¹*J*(¹⁰³Rh,¹³C) 18 Hz and two ¹³CO signals at δ 177.79 and 173.03, both triplets, with underlying doublets; ${}^{1}J({}^{103}Rh, {}^{13}C) =$ ${}^{2}J({}^{13}C, {}^{13}C) = 59$ Hz, see Figure 1. The attribution of one 59 Hz coupling to ${}^{2}J({}^{13}C,{}^{13}C)$ is confirmed by treating $[Rh_2({}^{13}COMe)_2({}^{13}CO)_2I_6]^2$ with ${}^{12}CO$, when predominantly $[Rh(^{13}COMe)(^{13}CO)(^{12}CO)I_3]^-$ is formed, and the ^{13}CO n.m.r. signal consists of two doublets, with underlying triplets. The value of 59 Hz for ${}^{2}J({}^{13}C,{}^{13}C)$ demonstrates a trans carbonyl arrangement, (II). As many rhodium acyl complexes are 5-co-ordinate it is possible that this compound is also square-pyramidal with the vacant site trans to COMe. The carbonyl inequivalence arises from restricted rotation about the Rh-COMe bond with ΔG^{\ddagger} 7.6 kcal mol⁻¹.[†] This compound has been previously reported,³ but a fac-structure, (III), was suggested. $[Rh(^{13}COMe)(^{13}CO)_2I_3]^-$ slowly decomposes at room temperature to give $[Rh(^{13}CO)_2I_2]^-$ and various organic acetyl species. It is improbable that (II) with its trans-carbonyls will decompose directly to give $[Rh(CO)_2I_2]^-$ with *cis*-carbonyls. Therefore, the mechanism probably consists of isomerisation of (II) to (III), which rapidly loses CH₃COI, and is not detected.

When N₂ is passed through a solution of $[Rh(COMe)-(CO)_2I_3]^-$, $[Rh_2(COMe)_2(CO)_2I_6]^{2-}$ is generated. Hence

 $Rh_2(CO)_4Cl_2$ in CH₂Cl₂ readily exchanges with ¹³CO. Subsequent reaction with MeI, AsPh₄Cl, and LiI yields [AsPh₄]₂[Rh₂-(¹³COMe)₂(¹³CO)₂I₆], ref. 3.

repeated treatment§ of $[Rh_2({}^{13}CO{}^{13}CH_3)({}^{13}CO)_2I_6]^{2-}$ with alternately ${}^{12}CO$ and N_2 generates $[Rh_2({}^{13}CO{}^{13}CH_3)_2{}^{-}({}^{12}CO)_2I_6]^{2-}$. The ${}^{13}CH_3$ n.m.r. spectrum has a doublet, δ 46.07, ${}^{1}J({}^{13}C,{}^{13}C)$ 35 Hz with a singlet due to the ${}^{13}CH_3{}^{12}CO$ group, and provides a monitor of the ${}^{12}CO{}^{13}CH_3{}^{13}CO{}^{13}CH_3$ ratio. After 1 week in CH_2Cl₂ this ratio does not change, remaining at 1 : 4 as it was in the initial $[Rh_2 ({}^{13}CO {}^{13}CH_3)_2({}^{13}CO)_2I_6]^{2-}$. Therefore $[Rh_2({}^{13}CO{}^{-13}CH_3)_2 ({}^{12}CO)_2I_6]^{2-}$ does not give $[Rh({}^{13}CH_3)({}^{12}CO){}^{-}({}^{13}CO)_{13}]^{-}$ at a significant rate to permit ${}^{12}C/{}^{13}C$ scrambling, yielding $[Rh_2({}^{12}CO{}^{13}CH_3)_2({}^{13}CO)_2I_6]^{2-}$, even though the formation of $[Rh_2(COCH_3)_2I_6]^{2-}$ from $[Rh(CO)_2I_2]^{-}$ and CH₃I is believed to go *via* $[Rh(CH_3)(CO)_2I_3]^{-,2}$ This is surprising in view of the facile formation of rhodium-methyls from other rhodium-acetyls, and indicates an unusual chemistry for $[Rh_2(COCH_3)_2(CO)_2I_6]^{2-}$.

We thank the S.E.R.C. for financial support to C. P. M. and access to the Bruker WH400 n.m.r. spectrometer in Sheffield.

Received, 22nd February 1985; Com. 235

References

- 1 P. M. Maitlis, New Scientist, 1983, 98, 208.
- 2 D. Forster, Adv. Organomet. Chem., 1979, 17, 255.
- 3 D. Forster, J Am. Chem. Soc., 1976, 98, 846.
- 4 G. W. Adamson, J. J. Daly, and D. Forster, *J. Organomet. Chem.*, 1974, 71, C17.
- 5 D. L. Egglestone, M. C. Baird, C. J. L. Lock, and G. Turner, J. Chem. Soc., Dalton Trans., 1977, 1576.
- 6 I. C. Douek and G. Wilkinson, J. Chem. Soc. A, 1969, 2604.
- 7 M. A. Bennett, J. C. Jeffery, and G. B. Robertson, *Inorg. Chem.*, 1981, **20**, 323.
- 8 C.-H. Cheng, B. D. Spivack, and R. Eisenberg, J. Am. Chem. Soc., 1977, 99, 3003.
- 9 A. R. Siedle, R. A. Newmark, and L. H. Pignolet, Organometallics, 1984, 3, 855.

§ Synthesised as $[AsPh_4]_2[Rh_2({}^{13}COMe)_2({}^{13}CO)_2I_6]$, using ${}^{13}CH_3I$.