q-Arene and q-Cyclohexadiene Tungsten Chemistry: New Synthetic Routes to Tertiary Phosphine-Hydride Derivatives

Malcolm L. H. Green and Gerard Parkin

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX? 3QR, U.K.

Convenient syntheses of W(η -C₆H₈)(PMe₃)₃H₂ and W(η -C₆H₆)(PMe₃)₂H₂ are described; these compounds, together with W(η -C₆H₆)(η -C₆H₈)H₂, W(η -PhMe)(PMe₃)₂H₂, W(η -PhMe)(Me₂PCH₂CH₂PMe₂)H₂, and W(η -C₆H₆)(PMe₃)₃ have been synthesized using either tungsten atoms or by the reductive labilization of an η -PhMe ring of W(η -PhMe)₂ using potassium metal.

It is clear from the existing studies on the (q-arene)tungsten system $1-3$ that there can be expected to be an extensive and varied chemistry for high-energy , half sandwich **(q**arene)tungsten compounds. The common precursors to this chemistry are bis(q-arene)tungsten compounds. These are difficult to prepare by normal synthetic methods⁴ and otherwise require metal vapour synthesis techniques.⁵ Here we describe a new route to (q-arene) and (q-cyclohexadiene)tungsten compounds using readily available tungstentertiary phosphine compounds as precursors. Further exam*ples* of (q-arene)tungsten chemistry are also described, including displacement of one or two of the toluene rings from $bis(\eta$ -toluene)tungsten by tertiary phosphine and hydride ligands.

The compounds $W(PMe_3)_5H_2$, $W(PMe_3)_4H_4$, and W(PMe3)3H6 are readily available **.6** Treatment of $W(PMe₃)₅H₂$ {or $W(PMe₃)₃H₆$ } with cyclohexa-1,3-diene gives pale brown crystals of $W(\eta - 1, 3 - C_6H_8)(PMe_3)$ ₃H₂ (1), in 80% yield. Transition metal diene hydride compounds are comparatively rare and some compounds may be better described as agostic η-allyl compounds.⁷ However, n.m.r. studies on **(1)** show it to have the diene-dihydride structure,

Scheme 1. *Reagents:* i, C_6H_{10} -PMe₃ (10:1); ii, C_6H_{10} -PMe₃ (10:1) or **v**, **PMe₃** at 55[°]C; vi, 1,3-C₆H₈^{α} at 60[°]C and for W(PMe₃)₄(CH₂P-Me₂)H, either 1,3- or 1,4-C₆H₈ at 60°C in benzene; vii, For $W(PMe₃)₄(CH₂PMe₂)(H),$ 1,3- or 1,4-C₆H₈ at 60 °C in benzene; viii, For $W(PMe_3)_4H_4$, 1,3-C₆H₈, *hv* in pentane; for $W(PMe_3)_2Cl_4$, $1,3-C_6H_8$, Na(K) alloy in pentane. 1,3-C₆H₈-PMe₃ (10: 1); iii, C₆H₁₀ or 1,3-C₆H₈; iv, C₆H₆-PMe₃ (5: 1);

thus providing further evidence that the tendency to form the agostic compound decreases with the heavier members of the transition metals.⁷ The compound $W(\eta - C_6H_6)(PMe_3)_2H_2$ (2) may be conveniently prepared in *ca.* 30% yield by photolysis of $W(PMe₃)₄H₄$ in the presence of cyclohexa-1,3-diene using a medium-pressure mercury lamp. Alternatively, reduction **of** $W(PMe₃)₂Cl₄$ ⁸ in the presence of cyclohexa-1,3-diene using Na(K) alloy also gives **(2)** in *ca.* 30% yield. The reaction between $W(PMe_3)_4(\eta^2-CH_2PMe_2)H$ and cyclohexa-1,3-diene or cyclohexa-l,6diene gives **(1)** and **(2)** in the ratio **4:** 1.

Photolysis of **(1)** forms a mixture of **(2)** and W(q- C_6H_6)(PMe₃)₃ (3) *(ca.* 1 : 1 molar ratio); in the presence of H₂, $W(PMe₃)₃H₆$ is also formed.

Co-condensation of tungsten atoms with a mixture of cyclohexene and trimethylphosphine $(10:1)$ gives a mixture of the compounds $W(\eta - 1, 3 - C_6H_8)(PMe_3)_{3}H_2$ (1), and $W(\eta C_6H_6$)(PMe₃)₂H₂ (2) from which (1) can be isolated as pale brown crystals *(ca.* 5%). When tungsten atoms are cocondensed with a mixture of cyclohexa-l,3-diene and trimethylphosphine (10:1) three products are formed: (2),

 $W(\eta - C_6H_6)(\eta - C_6H_8)H_2$ (4), and a third compound which has not been isolated but the 1H n.m.r. spectrum suggests to be the hydrido compound $W(\eta - C_6H_7)(\eta - C_6H_8)(PMe_3)H$ (5). Co-condensation of tungsten atoms with benzene-trimethylphosphine *(5:* 1) gives the expected new compound W(q- C_6H_6)(PMe₃)₃ (3), which is isolated as orange crystals *(ca.*) 15%). Thus, the sequence of reactions of tungsten atoms and PMe₃-C₆H_x mixtures where $x = 12,9,10, 8$, and 6 shows how the products are related to the degree of unsaturation in the cyclic hydrocarbon. If the reactant hydrocarbon contains *n* saturated carbon atoms then the products are consistent with a transfer of up to *n* hydrogens from the ligand to the metal. Similarly, co-condensation of W atoms with cyclohexa-l,3 diene or cyclohexene gives the compound $W(\eta - C_6H_6)(\eta C_6H_8$ H₂ (4) as pale yellow crystals in *ca.* 10% yield. Solutions of **(4)** decompose at room temperature but in the presence of PMe₃ at 55 °C, **(3)** can be obtained.

Previous studies of the chemistry of bis(n-arene)tungsten compounds have shown that thermal replacement of one q-arene ring required strongly forcing conditions.10 We have found that η -toluene ring substitution of bis(η -toluene)tungsten *(6)* proceeds readily in the presence of potassium films. Thus, stirring tetrahydrofuran solutions of **(6)** containing trimethylphosphine in the presence of a potassium film at room temperature gives $W(\eta$ -PhMe)(PMe₃)₂H₂ (7) in *ca.* 50% yield. When the same reaction is carried out at 50° C and in the presence of dihydrogen (2atm) then the products are a mixture (n.m.r.) of (7), $W(\eta$ -PhMe)(PMe₃)₃,¹⁰ $W(PMe₃)₄H₄$, and W(PMe₃)₃H₆. Similarly, reaction of W(η -PhMe)₂ and 1,2-bis(dimethylphosphino)e thane (dmpe) with a potassium film in tetrahydrofuran gives the compound W(q-PhMe)(dmpe) H_2 .¹ We assume that this labilization of the $(\eta$ -PhMe) ring occurs owing to the reduction of W $(\eta$ -PhMe)₂ by potassium leading to population of metal-ring antibonding orbitals. The reactions are described in Scheme 1, and structures are proposed on the basis of detailed n.m.r. studies.+ With the exception of *(5),* all the new compounds

t *Charucterising Data* (coupling constants in Hz): **(1)** W(7- C_6H_8)(PMe₃)₃H₂, ¹H n.m.r. in C_6D_6 : 3.85 (br., 2H, 2H of η - C_6H_8), 2.54 (d, J_{H-H} 8.7, 2H, 2H of η -C₆H₈), 2.20 (br., 2H, 2H of η -C₆H₈), 1.75 (d, *JH-,* 8.7,2H, 2H Of 7-C6H8), 1.35 (d, **Jp-H** 7.4, 18H, 2PMe3), 1.28 (d, **Jp-H** 6.6, 9H, PMe,), -1.53 (m, W-H), and *-5.55* (br., **W-H)**; ³¹P{¹H} n.m.r. in C₇D₈: -30.87 (d, J_{P-P} 14.3, J_{P-W} 220, 2PMe3) and -32.14 (t, **Jp.p** 14.3, **Jp-w** 242, lPMe,); 31P{lH-Me) n.m.r. in C7D8: -30.87 (dt) and - 32.14 (tt); *3C n.m.r. in C7D8: (t, *J_C*._H 124.8, C_c), 26.70 (dq, *J*_{P-C} 26.9, *J_C*._H 126.8, 2PMe₃), and 26.20 (poorly resolved dq, *J*_{P-C} 26.8, PMe₃); *m*/z 494 (*M*+). **(2)** W(η-6H, C_6H_6), 1.59 (d, J_{P-H} 7.3, 18H, 2PMe₃), and -6.15 (t, J_{P-H} 48.1, ${}^{31}P\{{}^{1}H\text{-Me}\}$: 31.2 (t); m/z 416 *(M⁺).* (3) $W(\eta \text{-} C_6H_6)(PMe_3)_3$, ¹H n.m.r. in C_6D_6 : 3.62 (q, J_{P-H} 2.2, 6H, C_6H_6) and 1.31 (virtually coupled triplet, $J'_{\text{P-H}}$ 5.6, 27H, 3PMe₃); m/z 490 *(M+).* **(4)** W(η - $(s, 6H, C_6H_6)$, 3.12 (m, 2H, 2H of C_6H_8), 2.29 (m, 2H, 2H of C_6H_8), 1.19 (m, 2H, 2H of C₆H₈), and -7.98 (s, $J_{\text{W-H}}$ 70, 2H, 2W-H); ¹³C{¹H, off-resonance} in C₆D₆: 84.50 (d, C₆H₆), 81.45 (d, C_a or C_b), 52.19 (d, C_b or C_a), and 28.80 (t, C_c); *m*/z 342 (*M*+ - 2H). (5) W(η-C₆H₇)(η-C₆H₈)(PMe₃)H, ¹H n.m.r. in C₆D₆: 5 $(m, 1H), 5.02 (m, 1H), 4.67 (m, 1H), 3.90 (m, 1H), 3.76 (m, 1H), 2.80$ (m, 2H), 2.30 (m, 3H), and 2.07 (m, 4H), (15H of η -C₆H₇ and η -C₆H₈); 1.20 (d, J_{P-H} 10, 9H, PMe₃); -5.53 (d, J_{P-H} 40, J_{W-H} 40, 1H, W-H). **(7)** $W(n-PhMe)(PMe₃)₂H₂$, ¹H n.m.r. in C₆D₆: 4.38 (m, 2H, 2H **of** Ph), 4.33 **(m,** 2H, 2H **of** Ph), 4.02 (m, lH, 1H of Ph), 1.87 **(s,** 3H, PhMe), 1.61 (d, J_{P-H} 7.3, 18H, 2PMe₃), and -6.30 (t, J_{P-H} 48.1, 68.34 (d, $J_{\text{C-H}}$ 168.4, C_a or C_b), 47.59 (d, $J_{\text{C-H}}$ 141.7, C_b or C_a), 28.76 C_6H_6)(PMe₃)₂H₂ ¹H n.m.r. in C_6D_6 : 4.19 (quintet, J_{P-H} 1.1, J_{H-H} 1.1, J_{W-H} 48.9, 2H, 2W-H); ³¹P{¹H} in C₆D₆: 31.2 (s, J_{P-W} 277); C_6H_6)(η - C_6H_8) H_2 , ¹H n.m.r. in C_6D_6 : 5.49 (m, 2H, 2H of C_6H_8), 4.13 ¹³C{¹H, off-resonance} in $\ddot{C_6}D_6$: 84.50 (d, $\ddot{C_6}H_6$), 81.45 (d, C_a or C_b), $J_{\text{W-H}}$ 52, 2H, 2W-H); ³¹P{¹H} in C₆D₆: -30.9 **(s,** $J_{\text{P-W}}$ **284)**; $31P\{1H-Me\}$ in C_6D_6 : -30.9 (t); m/z 430 (M⁺).

J. CHEM. *SOC.,* **CHEM. COMMUN., 1985** 773

 (1) , (2) , (3) , (4) , and (7) have been characterised by microanalysis and mass spectroscopy.

We thank the S.E.R.C. for a grant (to **G. P.)** and the Donors of the Petroleum Research Fund administered by the American Chemical Society for partial support.

Received, 4th March 1985; Corn. 291

References

- **¹**W. **E.** Silverthorn, *Adv. Organomet. Chem.,* **1975, 13, 47.**
- **2** P. R. Brown, F. G. N. Cloke, M. L. H. Green, and N. J. Hazel, J. *Chem.* **SOC.,** *Dalton Trans.,* **1983, 1075.**
- **3** R. Davis and L. **A.** P. Kane-Maguire, in 'Comprehensive Organometallic Chemistry,' Vol. **3,** Pergamon, Oxford, **1982,** p. **1321.**

 $\ddot{}$

- F. G. **N.** Cloke and M. L. H. Green, J. *Chem. SOC., Dalton Trans.,* **1981, 1938.**
- M. **L.** H. Green, G. Parkin, C. Mingqin, and K. Prout, J. *Chem. Soc., Chem. Commun.,* **1984,1400; K.** W. Chiu, R. **A.** Jones, G. Wilkinson, **A.** M. R. Galas, M. B. Hursthouse, and K. M. Abdul Malik, *J. Chem.* **SOC.,** *Dalton Trans,* **1981, 1204;** M. **B.** Hursthouse, D. Lyons, M. Thornton-Pett, and G. Wilkinson, J. *Chem. Soc., Chem. Commun.,* **1983,476.**
- **7** M. Brookhart and M. L. H. Green, J. *Organomet. Chem.,* **1983, 250, 395.**
- **8 E.** Carmona, J. M. Marin, M. L. Poveda, R. D. Rogers, and J. L. Atwood, J. *Organomet. Chem.,* **1982, 238, C63.**
- **9** M. **L. H.** Green, D. O'Hare, and G. Parkin, J. *Chem.* **SOC.,** *Chem. Commun.,* **1985, 356.**
- 10 M. L. H. Green, F. G. N. Cloke, and *3.* J. Martin-Polo, unpublished observations.