η -Arene and η -Cyclohexadiene Tungsten Chemistry: New Synthetic Routes to Tertiary Phosphine–Hydride Derivatives

Malcolm L. H. Green and Gerard Parkin

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.

Convenient syntheses of $W(\eta-C_6H_8)(PMe_3)_3H_2$ and $W(\eta-C_6H_6)(PMe_3)_2H_2$ are described; these compounds, together with $W(\eta-C_6H_6)(\eta-C_6H_8)H_2$, $W(\eta-PhMe)(PMe_3)_2H_2$, $W(\eta-PhMe)(Me_2PCH_2CH_2PMe_2)H_2$, and $W(\eta-C_6H_6)(PMe_3)_3$ have been synthesized using either tungsten atoms or by the reductive labilization of an η -PhMe ring of $W(\eta-PhMe)_2$ using potassium metal.

It is clear from the existing studies on the $(\eta$ -arene)tungsten system¹⁻³ that there can be expected to be an extensive and varied chemistry for high-energy, half sandwich $(\eta$ arene)tungsten compounds. The common precursors to this chemistry are bis $(\eta$ -arene)tungsten compounds. These are difficult to prepare by normal synthetic methods⁴ and otherwise require metal vapour synthesis techniques.⁵ Here we describe a new route to $(\eta$ -arene) and $(\eta$ -cyclohexadiene)tungsten compounds using readily available tungstentertiary phosphine compounds as precursors. Further examples of $(\eta$ -arene)tungsten chemistry are also described, including displacement of one or two of the toluene rings from $bis(\eta$ -toluene)tungsten by tertiary phosphine and hydride ligands.

The compounds $W(PMe_3)_5H_2$, $W(PMe_3)_4H_4$, and $W(PMe_3)_3H_6$ are readily available.⁶ Treatment of $W(PMe_3)_5H_2$ {or $W(PMe_3)_3H_6$ } with cyclohexa-1,3-diene gives pale brown crystals of $W(\eta$ -1,3-C₆H₈)(PMe₃)₃H₂ (1), in 80% yield. Transition metal diene hydride compounds are comparatively rare and some compounds may be better described as agostic η -allyl compounds.⁷ However, n.m.r. studies on (1) show it to have the diene–dihydride structure,

Scheme 1. Reagents: i, C_6H_{10} -PMe₃ (10:1); ii, C_6H_{10} -PMe₃ (10:1) or 1,3- C_6H_8 -PMe₃ (10:1); iii, C_6H_{10} or 1,3- C_6H_8 ; iv, C_6H_6 -PMe₃ (5:1); v, PMe₃ at 55°C; vi, 1,3- C_6H_8 at 60°C and for W(PMe₃)₄(CH₂P-Me₂)H, either 1,3- or 1,4- C_6H_8 at 60°C in benzene; vii, For W(PMe₃)₄(CH₂PMe₂)(H), 1,3- or 1,4- C_6H_8 at 60°C in benzene; viii, For W(PMe₃)₄H₄, 1,3- C_6H_8 , hv in pentane; for W(PMe₃)₂Cl₄, 1,3- C_6H_8 , Na(K) alloy in pentane.

thus providing further evidence that the tendency to form the agostic compound decreases with the heavier members of the transition metals.⁷ The compound $W(\eta-C_6H_6)(PMe_3)_2H_2$ (2) may be conveniently prepared in *ca*. 30% yield by photolysis of $W(PMe_3)_4H_4$ in the presence of cyclohexa-1,3-diene using a medium-pressure mercury lamp. Alternatively, reduction of $W(PMe_3)_2Cl_4^8$ in the presence of cyclohexa-1,3-diene using Na(K) alloy also gives (2) in *ca*. 30% yield. The reaction between $W(PMe_3)_4(\eta^2-CH_2PMe_2)H$ and cyclohexa-1,3-diene or cyclohexa-1,4-diene gives (1) and (2) in the ratio 4:1.

Photolysis of (1) forms a mixture of (2) and W(η -C₆H₆)(PMe₃)₃(3) (*ca.* 1:1 molar ratio); in the presence of H₂, W(PMe₃)₃H₆ is also formed.

Co-condensation of tungsten atoms with a mixture of cyclohexene and trimethylphosphine (10:1) gives a mixture of the compounds $W(\eta-1,3-C_6H_8)(PMe_3)_3H_2$ (1), and $W(\eta-C_6H_6)(PMe_3)_2H_2$ (2) from which (1) can be isolated as pale brown crystals (*ca.* 5%). When tungsten atoms are co-condensed with a mixture of cyclohexa-1,3-diene and trimethylphosphine (10:1) three products are formed: (2),

 $W(\eta - C_6H_6)(\eta - C_6H_8)H_2$ (4), and a third compound which has not been isolated but the ¹H n.m.r. spectrum suggests to be the hydrido compound $W(\eta-C_6H_7)(\eta-C_6H_8)(PMe_3)H$ (5). Co-condensation of tungsten atoms with benzene-trimethylphosphine (5:1) gives the expected new compound $W(\eta$ - C_6H_6 (PMe₃)₃ (3), which is isolated as orange crystals (ca. 15%). Thus, the sequence of reactions of tungsten atoms and $PMe_3-C_6H_x$ mixtures where x = 12,9 10, 8, and 6 shows how the products are related to the degree of unsaturation in the cyclic hydrocarbon. If the reactant hydrocarbon contains nsaturated carbon atoms then the products are consistent with a transfer of up to n hydrogens from the ligand to the metal. Similarly, co-condensation of W atoms with cyclohexa-1,3diene or cyclohexene gives the compound $W(\eta-C_6H_6)(\eta C_6H_8$)H₂ (4) as pale yellow crystals in *ca*. 10% yield. Solutions of (4) decompose at room temperature but in the presence of PMe₃ at 55 °C, (3) can be obtained.

Previous studies of the chemistry of bis(n-arene)tungsten compounds have shown that thermal replacement of one η -arene ring required strongly forcing conditions.¹⁰ We have found that η -toluene ring substitution of bis(η -toluene)tungsten (6) proceeds readily in the presence of potassium films. Thus, stirring tetrahydrofuran solutions of (6) containing trimethylphosphine in the presence of a potassium film at room temperature gives $W(\eta - PhMe)(PMe_3)_2H_2(7)$ in ca. 50% yield. When the same reaction is carried out at 50 °C and in the presence of dihydrogen (2 atm) then the products are a mixture (n.m.r.) of (7), $W(\eta$ -PhMe)(PMe₃)₃, $^{10}W(PMe_3)_4H_4$, and W(PMe₃)₃H₆. Similarly, reaction of W(η -PhMe)₂ and 1,2-bis(dimethylphosphino)ethane (dmpe) with a potassium film in tetrahydrofuran gives the compound W(n-PhMe)(dmpe) H_2 .¹ We assume that this labilization of the $(\eta$ -PhMe) ring occurs owing to the reduction of W $(\eta$ -PhMe)₂ by potassium leading to population of metal-ring antibonding orbitals. The reactions are described in Scheme 1, and structures are proposed on the basis of detailed n.m.r. studies.[†] With the exception of (5), all the new compounds

† Characterising Data (coupling constants in Hz): (1) $W(\eta$ - C_6H_8)(PMe₃)₃H₂, ¹H n.m.r. in C_6D_6 : 3.85 (br., 2H, 2H of η - C_6H_8), 2.54 (d, J_{H-H} 8.7, 2H, 2H of η - C_6H_8), 2.20 (br., 2H, 2H of η - C_6H_8), 1.75 (d, $J_{\text{H-H}}$ 8.7, 2H, 2H of η -C₆H₈), 1.35 (d, $J_{\text{P-H}}$ 7.4, 18H, 2PMe₃), 1.28 (d, J_{P+H} 6.6, 9H, PMe₃), -1.53 (m, W–H), and -5.55 (br., W–H); ³¹P{¹H} n.m.r. in C₇D₈: -30.87 (d, $J_{P,P}$ 14.3, $J_{P,W}$ 220, 2PMe₃) and -32.14 (t, $J_{P,P}$ 14.3, $J_{P,W}$ 242, 1PMe₃); ³¹P{¹H-Me} n.m.r. in C₇D₈: -30.87 (dt) and - 32.14 (tt); ¹³C n.m.r. in C₇D₈: 68.34 (d, J_{C-H} 168.4, C_a or C_b), 47.59 (d, J_{C-H} 141.7, C_b or C_a), 28.76 (t, J_{C-H} 124.8, C_c), 26.70 (dq, J_{P-C} 26.9, J_{C-H} 126.8, 2PMe₃), and 26.20 (poorly resolved dq, J_{P-C} 26.8, PMe₃); m/z 494 (M^+). (2) W(η-(pointy resolved eq., J_{P-C} 20.6, 11003), m2 424 (M). (2) $W(\eta - C_6H_6)(PMe_3)_2H_2$ ¹H n.m.r. in C_6D_6 : 4.19 (quintet, J_{P-H} 1.1, J_{H-H} 1.1, 6H, C_6H_6), 1.59 (d, J_{P-H} 7.3, 18H, 2PMe₃), and -6.15 (t, J_{P-H} 48.1, J_{W-H} 48.9, 2H, 2W-H); ³¹P{¹H} in C_6D_6 : 31.2 (s, J_{P-W} 277); ³¹P{(M_{P-H} 2.4), M_{P-H} 2.4), M_{P-H} 2.7), ³¹P{(M_{P-H} 2.4), M_{P-H} 2.4), ³¹P{(M_{P-H} 2.4), M_{P-H} 2.4), ³¹P{(M_{P-H} 2.4 ³¹P{¹H-Me}: 31.2 (t); m/z 416 (M^+). (3) W(η -C₆H₆)(PMe₃)₃, ¹H n.m.r. in C_6D_6 : 3.62 (q, J_{P-H} 2.2, 6H, C_6H_6) and 1.31 (virtually coupled triplet, J'_{P-H} 5.6, 27H, 3PMe₃); m/z 490 (M^+). (4) W(η -C₆H₆)(η-C₆H₈)H₂, ¹H n.m.r. in C₆D₆: 5.49 (m, 2H, 2H of C₆H₈), 4.13 (s, 6H, C₆H₆), 3.12 (m, 2H, 2H of C₆H₈), 2.29 (m, 2H, 2H of C₆H₈), 1.19 (m, 2H, 2H of C_6H_8), and -7.98 (s, J_{W-H} 70, 2H, 2W-H); $^{13}C{^{1}H}$, off-resonance} in C_6D_6 : 84.50 (d, C_6H_6), 81.45 (d, C_a or C_b), 52.19 (d, C_b or C_a), and 28.80 (t, C_c); m/z 342 ($M^+ - 2H$). (5) W(η - C_cH_7)(η - C_cH_8)(PMe₃)H, ¹H n.m.r. in C_6D_6 : 5.50 (m, 1H), 5.27 (m, 1H), 5.02 (m, 1H), 4.67 (m, 1H), 3.90 (m, 1H), 3.76 (m, 1H), 2.80 (m, 2H), 2.30 (m, 3H), and 2.07 (m, 4H), (15H of η -C₆H₇ and η -C₆H₈); 1.20 (d, J_{P-H} 10, 9H, PMe₃); -5.53 (d, J_{P-H} 40, J_{W-H} 40, 1H, W–H). (7) W(η -PhMe)(PMe₃)₂H₂, ¹H n.m.r. in C₆D₆: 4.38 (m, 2H, 2H of Ph), 4.33 (m, 2H, 2H of Ph), 4.02 (m, 1H, 1H of Ph), 1.87 (s, 3H, PhMe), 1.61 (d, J_{P-H} 7.3, 18H, 2PMe₃), and -6.30 (t, J_{P-H} 48.1, J_{W-H} 52, 2H, 2W-H); ³¹P{¹H} in C₆D₆: -30.9 (s, J_{P-W} 284); ³¹P{¹H-Me} in C₆D₆: -30.9 (t); m/z 430 (M^+).

J. CHEM. SOC., CHEM. COMMUN., 1985

(1), (2), (3), (4), and (7) have been characterised by microanalysis and mass spectroscopy.

We thank the S.E.R.C. for a grant (to G. P.) and the Donors of the Petroleum Research Fund administered by the American Chemical Society for partial support.

Received, 4th March 1985; Com. 291

References

- 1 W. E. Silverthorn, Adv. Organomet. Chem., 1975, 13, 47.
- P. R. Brown, F. G. N. Cloke, M. L. H. Green, and N. J. Hazel, J. Chem. Soc., Dalton Trans., 1983, 1075.
 R. Davis and L. A. P. Kane-Maguire, in 'Comprehensive'
- 3 R. Davis and L. A. P. Kane-Maguire, in 'Comprehensive Organometallic Chemistry,' Vol. 3, Pergamon, Oxford, 1982, p. 1321.

.

- 5 F. G. N. Cloke and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1981, 1938.
- M. L. H. Green, G. Parkin, C. Mingqin, and K. Prout, J. Chem. Soc., Chem. Commun., 1984, 1400; K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, and K. M. Abdul Malik, J. Chem. Soc., Dalton Trans, 1981, 1204; M. B. Hursthouse, D. Lyons, M. Thornton-Pett, and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1983, 476.
- 7 M. Brookhart and M. L. H. Green, J. Organomet. Chem., 1983, 250, 395.
- 8 E. Carmona, J. M. Marin, M. L. Poveda, R. D. Rogers, and J. L. Atwood, J. Organomet. Chem., 1982, 238, C63.
- 9 M. L. H. Green, D. O'Hare, and G. Parkin, J. Chem. Soc., Chem. Commun., 1985, 356.
- 10 M. L. H. Green, F. G. N. Cloke, and J. J. Martin-Polo, unpublished observations.