Carbon–Carbon Bond Formation between α -Halogenoketones and Aldehydes Promoted by Cerium(III) lodide or Cerium(III) Chloride–Sodium lodide

Shin-ichi Fukuzawa,* Tatsuo Fujinami, and Shizuyoshi Sakai

Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan

 α -Halogenoketones react with aldehydes to form α , β -unsaturated ketones accompanied by dehalogenation in the presence of cerium(III) iodide, but the use of cerium(III) chloride-sodium iodide results in the formation of β -keto alcohols.

Recently the use of lanthanide salts in organic synthesis has been of interest. Several synthetically useful organic reactions using trivalent lanthanide salts have been reported.¹ In the hydrodehalogenation of α -halogenoketones with cerium(III) sulphate and sodium iodide^{1b} cerium enolate was assumed to be formed as an intermediate in the reaction, which was carried out in aqueous tetrahydrofuran (THF). It was thought that if a non-aqueous solvent was employed instead, the reactivity of the cerium enolate could be examined.^{2,3} Indeed, when α -halogenoketones were treated with cerium(III) iodide (CeI₃) prepared *in situ* from cerium metal and iodine,⁴ followed by addition of aldehydes in dry THF, an aldol-like Table 1. The reaction between α -halogenoketones and aldehydes in the presence of CeI₃.^a

α-Halogenoketone	Aldehyde	Product(s)	Yield/%b
PhCOCH ₂ Br	MeCHO ^c	PhCOCH=CHMe ^d	95
	EtCHO ^c	PhCOCH=CHEt ^d	95
	PhCHO	PhCOCH=CHPhd	98
	осн=снсн=ссно	PhCOCH=CHC=CHCH=CHO	98
	MeCH=CHCHO	PhCOCH=CHCH=CHMe	95
	PhCH=CHCHO	PhCOCH=CHCH=CHPh	95
	$Me_2C=CHCH_2C(Me)=CHCHO$	PhCOCH=CHC=C(Me)CH ₂ CH ₂ CH=CMe ₂	90
	EtCHO ^{c,e}	PhCOCH ₂ CH(OH)Et	80
		PhCOCH=CHEt	10
	OCH=CHCH=CCHO	PhCOCH ₂ C(OH)HC=CHCH=CHO	85
		PhCOCH=CHC=CHCH=CHO	10
MeCOCH ₂ Cl	PhCHO	MeCOCH=CHPh	80
ĊOCH ₂ CH ₂ CH ₂ CH ₂ ĊHCl	PhCHO	COCH ₂ CH ₂ CH ₂ CH ₂ C+CHPh	70
ĊOCH ₂ CH ₂ CH ₂ CH ₂ CHBr	PhCHO	COCH ₂ CH ₂ CH ₂ CH ₂ C=CHPh	90
COCH ₂ CH ₂ CH ₂ CH ₂ CHBr	PhCHO ^e	COCH ₂ CH ₂ CH ₂ CH ₂ CHCH(OH)Ph	80

^a A mixture of α -halogenoketone (2 mmol), aldehyde (2 mmol), and CeI₃ (2 mmol) in THF was stirred at room temperature for 1 h. ^b Isolated yield. ^c 4 mmol aldehyde was used. ^d Predominantly *trans*. ^e CeCl₃ (2 mmol) and NaI (6 mmol) were used instead of CeI₃.

reaction occurred under mild conditions, α , β -unsaturated ketones being obtained, equation (1). This is the first example of the generation and reaction of a cerium enolate that does not use a metal exchange procedure.³

In a typical reaction, phenacyl bromide (2 mmol) was added to a THF (5 ml) solution of CeI_3 (2 mmol). Benzaldehyde (2 mmol) was then added at room temperature. The resulting mixture was stirred for 1 h, and then quenched with aqueous sodium thiosulphate and extracted with chloroform. After drying over MgSO₄ and evaporation of the solvent, the crude product was purified by column chromatography on silica gel. The product was determined to be chalcone by ¹H n.m.r. and i.r. The reaction occurs with other aldehydes also to give α,β -unsaturated ketones in high yields. With α,β -unsaturated aldehydes such as cinnamaldehyde and crotonaldehyde, the carbonyl carbon was attacked initially, followed by dehydration to give buta-1,3-dienyl ketones in excellent yields. Other α -halogenoketones such as 1-chloroacetone, 2-chlorocyclohexanone, and 2-bromocyclohexanone reacted similarly with aldehydes to form α,β -unsaturated ketones. Typical results are summarized in Table 1.

When the reaction was quenched with deuterium oxide, deuteriated acetophenone (PhCOCH₂D) was isolated from the reaction with phenacyl bromide. This indicates that the first step in the reaction is debromination and the reacting species is the cerium enolate.

In these reactions C-C bond formation and subsequent dehydration occurs in one pot. In contrast, the use of

cerium(III) chloride (CeCl₃)-sodium iodide (NaI) instead of CeI₃ resulted mainly in the production of β -keto alcohols, with only a little subsequent dehydration, equation (2). These results are also shown in Table 1. This type of reaction is analogous to the reaction of other metal enolates.³ Thus, different products are obtained using CeI₃ or CeCl₃-NaI.[†]

Received, 27th February 1985; Com. 270

References

- For recent examples see, (a) P. Girard and H. B. Kagan, *Tetrahedron Lett.*, 1975, 4513; J.-L. Luche and A. L. Gemal, J. *Chem. Soc.*, *Chem. Commun.*, 1978, 976; (b) T.-L. Ho, *Synth. Commun.*, 1979, 241; (c) M. Ouertani, P. Girard, and H. B. Kagan, *Tetrahedron Lett.*, 1982, 23, 4315. J. L. Namy, J. Soupe, J. Collins, and H. B. Kagan, J. Org. Chem., 1984, 49, 2045.
- 2 Preparation of cerium enolate by a metal exchange reaction between lithium enolate and CeCl₃ has been reported: T. Imamoto, T. Kusumoto, and M. Yokoyama, *Tetrahedron Lett.*, 1983, 24, 5233.
- 3 The preparation of aluminium enolate from α -halogenocarbonyl compounds is known, which reacts with some carbonyl compounds to give β -keto alcohols: K. Maruoka, S. Hashimoto, Y. Kitagawa, H. Yamamoto, and H. Nozaki, *Bull. Chem. Soc. Jpn.*, 1980, **53**, 3301; N. Tsuboniwa, S. Matsubara, Y. Morizawa, K. Oshima, and H. Nozaki, *Tetrahedron Lett.*, 1984, **25**, 2569.
- 4 J. L. Namy, P. Girard, and H. B. Kagan, *Nouv. J. Chim.*, 1977, 1, 5.

[†] We also showed that β-keto alcohols can be converted into α , β-unsaturated ketones by CeI₃ in THF. This suggests that the β-keto alcohol is formed first, with CeI₃ then working as a dehydrating agent.