The Inversion Spectrum of Cyanamide

Ronald D. Brown, Peter D. Godfrey, and Burkhard Kleibömer

Department of Chemistry, Monash University, Clayton, Victoria, 3168, Australia

Twelve Q branch lines and four R branch lines in the inversion spectrum of cyanamide are reported for the first time together with the μ_c component of the dipole moment of cyanamide and a double-minimum potential function that describes the inversion motion.

The microwave spectrum of cyanamide has been extensively studied¹⁻⁴ and together with its i.r. spectrum⁵ has led to the conclusion that the equilibrium structure of cyanamide has a pyramidal amino group. The analysis of Coriolis-type perturbations in the microwave spectrum has led to a value of about 49 cm⁻¹ for the inversion splitting.⁴ With an A rotational constant of about^{4,5} 10 cm⁻¹, c-type inversion lines

between the $K_{-1} = 2$ (0⁻) and $K_{-1} = 3$ (0⁺) levels are predicted to fall in the microwave region. However, hitherto these direct inversion transitions have not been observed. In the process of a more extensive measurement and analysis of the microwave spectrum of cyanamide,⁶ including various isotopic species, we were able to predict a ^cQ-branch starting above 50 GHz and we now report the detection and

(a)	^c Q-branch transitions 0^+ – 0^-	
	$10_{38} - 10_{28}$	55 607.347
	$10_{37} - 10_{29}$	55 683.173
	$11_{39} - 11_{29}$	56 259.931
	$11_{38} - 11_{210}$	56 369.495
	$12_{310} - 12_{210}$	56 958.929
	$12_{39} - 12_{211}$	57 112.386
	$13_{311} - 13_{211}$	57 701.310
	13_{310} -13_{212}	57 910.620
	$14_{312} - 14_{212}$	58 483.908
	$14_{311} - 14_{213}$	58763.136
	15_{313} - 15_{213}	59 303.641
	$15_{312} - 15_{214}$	59 668.931
(b)	^c R -branch transitions $0^ 0^+$	
	524-432	46932.477
	$5_{23} - 4_{31}$	46 937.625
	6 ₂₅ -4 ₃₃	66 557.926
	6 ₂₄ -5 ₃₂	66 568.575

Table 1. Observed direct inversion transitions of cyanamide.^a

^a In kHz. The estimated uncertainty of frequencies is ± 20 kHz.

identification of these transitions. We subsequently could also find a series of $^{\circ}$ R-branch lines with a separation of *ca*. 20 GHz. Table 1 lists the observed frequencies.

Inclusion of ^aQ-lines with $K_{-1} = 2$ and $K_{-1} = 3$, found in the progress of this work, allowed us to fit the rotation-inversion spectrum of cyanamide to a 2-vibrational level Hamiltonian similar to the one used by Johnson *et al.*⁴ 15 Rotational constants, the inversion frequency, and a matrix element, representing vibrational angular momentum in the *b* direction, could be determined.

Table 2. Observed and calculated energy levels in cm^{-1} .

	Observed	Calculated
0+	0	0
0-	49.279 ± 0.013^{a}	49.279
1+	413.6 ± 2.0^{b}	415.4
1-	714.1 ± 0.4^{b}	713.9

^a This work. ^b Ref. 5.

The inversion frequency was found to be 49.279 ± 0.013 cm⁻¹. This value and two additional i.r. frequencies⁵ were fitted to a simple double minimum potential $V = 45.09 \times (Q^4 - 6.461 \times Q^2)$ cm⁻¹, where Q is a dimensionless co-ordinate and the reduced mass was assumed to be fixed. The barrier to inversion is 470 cm⁻¹. Table 2 shows the good agreement between observed and calculated frequencies.

The application of electric fields leads to very strong mixing of vibrational-rotational wavefunctions and the appearance of forbidden Stark effects at higher fields. Investigation into the Stark effect of the J = 12 Q-branch inversion doublet led to a value of 1.04 ± 0.15 Debye for μ_c .

Received, 15th October 1984; Com. 1455

References

- 1 D. J. Millen, G. Topping, and D. R. Lide Jr., J. Mol. Spectrosc., 1962, 8, 153.
- 2 D. R. Lide Jr., J. Mol. Spectrosc., 1962, 8, 142.
- 3 J. K. Tyler and J. Sheridan, J. Mol. Spectrosc., 1972, 43, 248.
- 4 D. R. Johnson, R. D. Suenram, and W. J. Lafferty, Astrophys. J., 1976, 208, 243.
- 5 T. R. Jones and N. Sheppard, Chem. Commun., 1970, 715.
- 6 R. D. Brown, P. D. Godfrey, and B. Kleibömer, to be published.