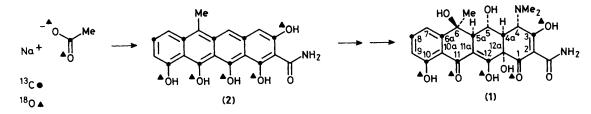
Oxytetracycline Biosynthesis: Mode of Incorporation of [1-13C, 18O2]Acetate

Robert Thomas* and David J. Williams


Faculty of Science, University of Surrey, Guildford, Surrey GU2 5XH, U.K.

The regiospecific locations of $[^{18}O_2]$ acetate-derived oxygen substituents of oxytetracycline (1) have been determined using the ^{13}C n.m.r. isotope shift technique and shown to correspond exclusively to those oxygen-bearing carbons which originate biosynthetically from the carboxy group of acetate.

N.m.r.-based studies of the incorporation of $[1,2,3^{-13}C_3]$ -malonate¹ have recently established the exclusive malonate origin of the carbon skeleton of both the tetracyclic nucleus and the carboxamide substituent of oxytetracycline (1). The present communication describes the selective derivation of the oxygen substituents at carbons 1, 3, 10, 11, and 12 from acetate as shown in Scheme 1.

Following incorporation of $[1-^{13}C, ^{18}O_2]$ acetate (isotopic purity ^{13}C 90%, ^{18}O 99%) into (1) by *Streptomyces rimosus* under conditions described previously,² the sites of ^{18}O enrichment were determined by ^{13}C n.m.r. spectroscopy, based on the characteristic isotopic shifts³ observed at ^{18}O -substituted ^{13}C atoms (Table 1).

The proton noise-decoupled ${}^{13}C$ n.m.r. spectrum of (1)

Scheme 1

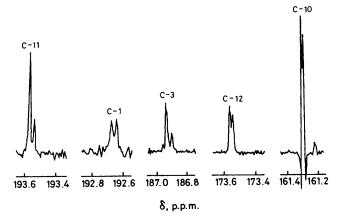


Figure 1. Expanded proton noise-decoupled ${}^{13}C$ n.m.r. spectrum of $[1{}^{-13}C, {}^{18}O_2]$ acetate-derived oxytetracycline (1) showing ${}^{18}O$ -isotopically shifted resonances. Chemical shifts determined at 90.56 MHz relative to the midline of $(CD_3)_2SO$.

obtained at a probe temperature of 35 °C showed poor resolution of the C-1 signal; however, at an elevated temperature (80 °C), the presence of the corresponding ¹⁸O-shifted satellite was readily apparent (Figure 1).

A small variation was evident in the degree of 18 O-retention at carbons 1, 3, 10, 11, and 12. Similar ratios of the intensities of 13 C signals bearing 18 O and 16 O substituents were observed for C-3, -10, and -11 (*ca.* 35:65) in contrast to C-1, where the corresponding ratio approximated to 57:43 with an intermediate value for C-12 (50:50).

In his early study of oxytetracycline biosynthesis, Gatenbeck⁴ reported [1-¹⁴C]acetate-derived labelling of the carboxamide substituent with 50% of the efficiency of the corresponding labelled carbons of the carbocyclic nucleus. He accounted for this value by suggesting an oxidative conversion of both acetate carbons into CO₂ prior to incorporation into the carboxamide. This proposal is supported by our recent report of appreciable ¹³C-labelling of the carboxamide moiety of [1-¹³C]acetate-derived oxytetracycline.^{2,5} Using [1,2-¹³C₂]acetate we have subsequently shown that the corresponding incorporation of label is approximately doubled (2.04:1.00), consistent with comparable conversion efficiences for both acetate carbons.

The absence of detectable ¹⁸O-labelling of the carboxamide

Table 1. ¹³C N.m.r. data for ¹⁸O-isotopically shifted resonances observed in oxytetracycline (1) derived from $[1-^{13}C, ^{18}O_2]$ acetate.

Carbon	Isotopic shift $(\Delta, p.p.m.)$	Isotopic ratio ^a ¹⁶ O : ¹⁸ O
11	0.032	70:30
1	0.034 ^b	43:57
3	0.033	65:35
12	0.017	50:50
10	0.010	65:35

^a Isotopic ratios estimated by comparison of the relative intensities of ¹³C-¹⁶O to ¹³C-¹⁸O signals after correcting the former signal intensity for its natural abundance ¹³C contribution. ^b ¹³C-¹⁸O Shift for carbon-1 resolved at 80 °C; data for all other carbons obtained at 35 °C.

moiety, despite significant incorporation of ¹³C-label from $[1^{-13}C, {}^{18}O_2]$ acetate, would be consistent with its conversion *via* acetyl coenzyme A and successive passes through the Krebs cycle to ${}^{13}C{}^{16/18}O_2$ with subsequent loss of ${}^{18}O$ by exchange with $H_2{}^{16}O$.

The remaining oxygen substituents at C-5, -6, and -12a appear to require oxidative introduction subsequent to the formation of 6-methylpretetramid (2) and it is proposed to investigate the specific labelling at these centres using ${}^{18}O_2$ and $H_2{}^{18}O$.

The authors acknowledge the award (to D.J.W.) of an S.E.R.C. (CASE) studentship and the helpful co-operation of Pfizer Limited, Sandwich, U.K. We are also particularly grateful to Dr. T. J. Simpson, Department of Chemistry, University of Edinburgh, for ¹³C n.m.r. spectral analysis.

Received, 31st December 1984; Com. 1798

References

- 1 R. Thomas and D. J. Williams, J. Chem. Soc., Chem. Commun., 1983, 677.
- 2 R. Thomas and D. J. Williams, J. Chem. Soc., Chem. Commun., 1983, 128.
- 3 J. C. Vederas, Can. J. Chem., 1982, 60, 1637; F. E. Scott, T. J. Simpson, L. A. Trimble, and J. C. Vederas, J. Chem. Soc., Chem. Commun., 1984, 756.
- 4 S. Gatenbeck, Biochem. Biophys. Res. Commun., 1961, 6, 422.
- 5 D. J. Williams, Ph.D. Thesis, University of Surrey, 1983.