Hydrogen Transfer Reactions in the Decomposition of Isolated 'Onium' ions containing an Incipient Allyl Cation

Richard D. Bowent

Department of Organic Chemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX, U.K.

Decomposition of metastable $CH_2=CHCH_2O^+=CH_2$ ions by loss of a neutral of mass 28 daltons, rather than by simple cleavage to $C_3H_5^+$ and $O=CH_2$, is explained using a mechanism involving intermediates stabilised by ion–dipole attractions.

Recent work has shown that intermediates comprising an incipient cation co-ordinated to a neutral species are of importance in the slow unimolecular reactions of isolated organic ions.^{1,2} Extensive ion-dipole stabilisation (50-90 kJ mol⁻¹) of these intermediates is possible, relative to the separated products, in systems containing a neutral species having a sizeable permanent electric dipole moment (1.5-2.5 D).³ Rearrangement of the incipient cations and hydrogen transfers between the developing products are thus facilitated at energies lower than those needed to promote direct dissociation.

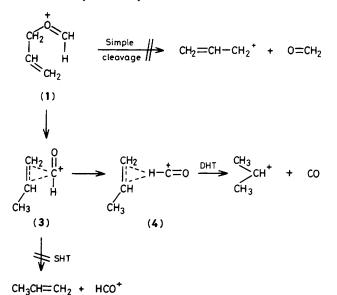
The chemistry of incipient allyl and prop-2-enyl cations can be investigated by studying the reactions of the oxonium ions (1) and (2). Good yields of (1) were obtained by ionisation and fragmentation of allyl alkyl ethers; however, the analogous process was unsatisfactory for the corresponding ionised

$$CH_2=CHCH_2O^+=CH_2$$

(1)
 $CH_2=C(CH_3)O^+=CH_2$
(2)

propenyl alkyl ethers, which decomposed via a retro 'ene' reaction. Moreover, (1) did not expel the expected $CH_2=O$ molecule in slow reactions, but eliminated a neutral of mass 28 daltons.

On the assumption that this process produces $(CH_3)_2CH^+$ and CO, the behaviour of (1) can be explained using the mechanism depicted in Scheme 1.


The C–O σ -bond in (1) is stretched, but before dissociation to allyl cation and CO is complete, a hydrogen transfer occurs to form a complex, (3), of HCO⁺ and CH₃CH=CH₂. This process should be especially facile because it may proceed through a six-membered ring transition state; breakdown of (3) would give rise to single hydrogen transfer (SHT).

[†] *Present address:* Department of Chemistry and Molecular Sciences, University of Warwick, Coventry CV4 7AL.

Reorganisation of (3) to (4) (or related species), followed by capture of the common proton by the incipient propene, provides a route for CO loss; this corresponds, overall, to double hydrogen transfer (DHT).

Reference to the appropriate energetics, Table 1, reveals that simple cleavage of (1) and SHT yields products of similar total energy; however, DHT gives products which are energetically far more favourable. The complexes (3) and (4)ought to be accessible starting from (1) at energies appreciably lower than those needed to induce simple cleavage in (1). Consequently, the unusual behaviour of (1) at low internal energies (metastable ions) is explained.

An alternative product combination, CH_3CO^+ and C_2H_4 , would also be energetically feasible; but this possibility is mechanistically less likely.

Scheme 1

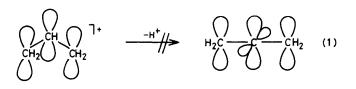


Table 1. Energy data relevant to decomposition of (1), (5), and (7).

The nitrogen analogue of (1), (5), also undergoes DHT: (5)eliminates HCN (3 parts), together with C₃H₆ (1 part). The divergent behaviour of (1) and (5) reflects changes in the underlying energetics, Table 1: SHT and DHT starting from (5) yield product combinations of similar total energies, each of which is substantially lower than the energy of the products formed by simple cleavage. However, it is interesting that an 'inverse' SHT, to give C₃H₄ loss, does not compete with elimination of HCN and C_3H_6 from (5), even though C_3H_4 loss produces low energy products. In contrast, the saturated analogue, (6), does exhibit such an 'inverse' SHT, in that (6) eliminates C₃H₆ to form CH₂=NH₂⁺.¹² A likely explanation for the non-occurrence of C_3H_4 loss from (5) is that deprotonation of the incipient allyl cation would lead to an unfavourable geometry of the developing CH₂=C=CH₂ orbitals (equation 1). This is consistent with earlier studies on the protonation of CH₂=C=CH₂ and CH₃C=CH, which demonstrate that the prop-2-enyl cation is the usual daughter ion, and that a substantial barrier must be surmounted before the allyl cation can be formed.17

$$CH_{2}=CHCH_{2}N+H=CH_{2}$$
(5)
$$CH_{3}CH_{2}CH_{2}N+H=CH_{2}$$
(6)
$$CH_{2}=CHCH_{2}O+=CHCH_{3}$$
(7)

The higher homologue of (1), (7), also does not undergo simple cleavage at low internal energies: loss of a neutral of mass 42 daltons is preferred. This may be formulated either as SHT (C_3H_6 elimination) or as DHT ($CH_2=C=O$ loss); SHT is more probable, since it is energetically preferable to simple cleavage or DHT. Again, no 'inverse' SHT (C_3H_4 loss) occurs from (7), although the saturated analogue of (7) ($CH_3CH_2CH_2O^+=CHCH_3$) does show such a reaction (C_3H_6 loss).³

Finally, it is significant that neither (5) nor (7) eliminate a neutral of mass 28 daltons in metastable transitions, even though C_2H_4 loss would lead to energetically favourable products in each case, Table 1. These observations support the view that C_2H_4 loss from (1) [and (5) and (7)] is mechanistically implausible.

	•					
Ion	Products and $\Delta H_{\rm f}(\rm kJmol^{-1})$					$\Sigma \Delta H_{\rm f} (\rm kJ mol^{-1})$
(1)	$\begin{cases} CH_2=C=CH_2\\ CH_2=CHCH_2^+\\ CH_3CH=CH_2\\ (CH_3)_2CH^+\\ CH_3CO^+ \end{cases}$	(190 ⁴) (945 ^{6,7}) (20 ⁴) (805 ^{7,9}) (650 ¹⁰)	+ + + +	CH ₂ =OH ⁺ CH ₂ =O HCO ⁺ CO CH ₂ =CH ₂	(705^{5}) (-115^{4}) (820^{8}) (-110^{4}) (50^{4})	895 830 840 695 700
(5)	$\left\{\begin{array}{l} CH_2 \!\!=\!\! C \!\!=\!\! CH_2 \\ CH_2 \!\!=\!\! CHCH_2^+ \\ CH_3 CH \!\!=\!\! CH_2 \\ (CH_3)_2 CH^+ \\ CH_3 C \!\!=\!\! NH^+ \end{array}\right.$	(190 ⁴) (945 ^{6,7}) (20 ⁴) (805 ^{7,9}) (840 ¹³)	+ + + +	$\begin{array}{l} CH_2 = NH_2^+ \\ HN = CH_2 \\ HC \equiv NH^+ \\ N \equiv CH \\ CH_2 = CH_2 \end{array}$	(745 ¹¹) (55 ^a) (935 ¹³) (130 ⁴) (50 ⁴)	935 1000 955 935 890
(7)	$\left\{\begin{array}{l} CH_3CH=OH^+\\ CH_3CH=O\\ CH_3CO^+\\ CH_2=C=O\\ CH_3CH_2CO^+\\ \end{array}\right.$	(5805)(-1654)(65011)(-5014,15)(60016)	+ + + +	$\begin{array}{c} CH_2 = C = CH_2 \\ CH_2 = CHCH_2^+ \\ CH_3 CH = CH_2 \\ (CH_3)_2 CH^+ \\ CH_2 = CH_2 \end{array}$	(190 ⁴) (945 ^{7,9}) (20 ⁴) (805 ^{7,9}) (50 ⁴)	770 780 670 755 650

* Estimated value; loss of C_4H_8 , rather than $CH_2=NH$, from metastable $(CH_3)_3CN^+H=CH_2$ ions establishes a lower limit of 35 kJ mol⁻¹ for $\Delta H_f(CH_2NH)$, ref. 12.

Financial support from the S.E.R.C. is gratefully acknow-ledged.

Received, 16th January 1985; Com. 071

References

- 1 R. D. Bowen and D. H. Williams, J. Am. Chem. Soc., 1980, 102, 2752; see also references cited therein.
- 2 For a review, see: T. H. Morton, Tetrahedron, 1982, 38, 3195.
- 3 R. D. Bowen and D. H. Williams, Int. J. Mass Spectrom. Ion Phys., 1979, 29, 47.
- 4 J. L. Franklin, J. G. Dillard, H. M. Rosenstock, J. T. Herron, K. Draxl, and F. H. Field, 'Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions,' National Bureau of Standards, Washington D.C., 1969, Appendix 1.
- 5 F. P. Lossing, J. Am. Chem. Soc., 1977, 99, 7526.
- 6 F. P. Lossing, Can. J. Chem., 1972, 50, 3973.
- 7 F. A. Houle and J. L. Beauchamp, J. Am. Chem. Soc., 1978, 100, 3290; 1979, 101, 4067.

- 8 P. M. Guyon, W. A. Chupka, and J. Berkowitz, J. Chem. Phys., 1976, 64, 1419.
- 9 J. C. Traeger and R. G. McLoughlin, J. Am. Chem. Soc., 1981, 103, 3647.
- 10 Mean of recent determinations: J. C. Traeger, R. G. McLoughlin, and A. J. C. Nicholson, J. Am. Chem. Soc., 1982, 104, 5318.
- 11 F. P. Lossing, Y.-T. Lam, and A. Maccoll, Can. J. Chem., 1981, 59, 2228.
- 12 R. D. Bowen, J. Chem. Soc., Perkin Trans. 2, 1980, 1219.
- 13 J. L. Wolf, R. H. Staley, I. Koppel, M.Taagepera, R. T. McIver, Jr., J. L. Beauchamp, and R. W. Taft, J. Am. Chem. Soc., 1977, 99, 5417.
- 14 R. L. Nuttall, A. H. Laufer, and M. V. Kilday, J. Chem. Thermodyn., 1971, 3, 167.
- 15 A. D. Williamson, J. Vogt, and J. L. Beauchamp, Chem. Phys. Lett., 1977, 47, 330.
- 16 H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data, Suppl. 1, 1977, 6.
- 17 S. Fornarini, M. Speranza, M. Attina, F. Cadace, and P. Giacomellio, J. Am. Chem. Soc., 1984, 106, 2498; see also references cited therein.