On the Reaction Specificity of MoO_3 Faces: the Role of $Mo_{18}O_{52}$ as a Precursor for MoO_3 Propylene Oxidation Catalysts

Jean-Claude Volta,^a Odile Bertrand,^b and Nicole Floquet^b

^a Institut de Recherches sur la Catalyse, CNRS, Conventionné à l'Université Claude Bernard, Lyon I, 2 Avenue Albert Einstein, 69626, Villeurbanne Cédex, France

^b Laboratoire de Réactivité des Solides, CNRS, Faculté des Sciences Mirande, B.P. 138, 21004, Dijon Cédex, France

Electron microscopy shows that crystals of $Mo_{18}O_{52}$ are oxidised under activation or catalytic conditions to MoO_3 crystallites with highly developed (100) and (101) or (101) faces with a subsequent improvement in the selectivity of propylene oxidation to acrolein.

The different faces of a crystal can exhibit different catalytic properties and this has been demonstrated in the case of MOO_3 for partial oxidation of propylene,^{1—4} but-1-ene, and but-2ene.⁵ Studies on graphite-supported MOO_3 catalysts and on unsupported MOO_3 microcrystals have shown that the (100) MOO_3 face is specific for allylic oxidation, and this has been explained by the unusual structure of this face. It has been proposed that the crystallographic fit observed between the support (graphite) and the active phase (MOO_3) is responsible for the unusual development of the (100) MOO_3 crystal face in comparison with naturally grown MOO_3 crystals.⁶ This has been extended to other catalytic oxide systems for which reaction specificity has been observed.⁶

This communication reports that $Mo_{18}O_{52}$, which exhibits a sub-structure of the MoO_3 type, can generate, as a nucleation matrix during activation with a propylene–air mixture, MoO_3 crystallites with highly developed (100), (101), or (101) faces, coupled with a subsequent improvement in the selectivity of propylene oxidation to acrolein.

 $Mo_{18}O_{52}$ exhibits a structure which can be regarded as MoO₃ layers cut into strips.⁷ Figure 1 shows the arrangement of the MoO₆ octahedra along the (010) MoO₃ cross-section and the configuration of the (100) MoO₃ cross-section edescribed as a stair structure with (010) MoO₃ terraces built of six MoO₆ octahedra in the [100] MoO₃ direction and eighteen MoO₆ octahedra in the [001] MoO₃ direction. The [010] Mo₁₈O₅₂ ledge consists of (100) MoO₃ kinks (three MoO₆ octahedra) and (001) MoO₃ kinks (one MoO₆ octahedron) so that the [010] Mo₁₈O₅₂ direction is parallel to the [103] of MoO₃. This structure has molybdenum corner atoms with low co-ordination [intersection of the (010) MoO₃ terraces with the (001) and (100) MoO₃ kinks]. $Mo_{18}O_{52}$ crystals were prepared in a sealed quartz tube from powdered MoO_3 and Mo metal heated at 700 °C in the presence of I_2 .⁸ Preparation conditions were chosen to favour the synthesis of $Mo_{18}O_{52}$ only, free of any other molybdenum oxides such as MoO_3 , Mo_9O_{26} , Mo_8O_{23} , Mo_4O_{11} , and MoO_2 . The structure of the solid was then determined by X-ray diffraction and electron microscopy [transmission and scan-

Figure 1. (a) Structure of $Mo_{18}O_{52}$ along the (010) cross-section of MoO₃. (b) Configuration of the (100) $Mo_{18}O_{52}$ surface.

Table 1. Catalytic activity of MoO₃ and Mo₁₈O₅₂ samples in propylene oxidation (T = 375 °C, O₂-C₃H₆-N₂ = 150-100-510 Torr; flow rate 1 cm³ s⁻¹).

Solid	Conversion of $C_3H_6/\% g^{-1}$	Selectivities			
		CO ₂	Acrolein	Ethanal	Propanal
$Mo_{18}O_{52}^{a}$	1.640	38	42	13	7
MoÕ ₃ ^b	0.015	55	37	5	3
Activated Mo ₁₈ O ₅₂ c	0.423	12.5	73	12.5	2

^a Surface area = 2.4 m² g⁻¹. ^b Surface area = 0.03 m² g⁻¹. ^c Activated under $O_2-C_3H_6-N_2$ (150–100–510 Torr) mixture for 20 min at 475 °C; flow rate 0.07 cm³ s⁻¹.

Figure 2. Electron microscopy of the solids. Surface of $Mo_{18}O_{52}$ (a) after 16 h catalysis at 375 °C and (b) after 63 h catalysis at 375 °C. (c). MoO_3 crystallite observed after activation of $Mo_{18}O_{52}$ at 475 °C.

ning electron microscopy (t.e.m. and s.e.m.) and reflection high energy electron diffraction (r.h.e.e.d.)] before and after activation under an air-propylene mixture at 475 °C for 20 min (composition $O_2-C_3H_6-N_2 = 150-100-510$ Torr) with a rapid attainment of temperature and also after catalytic propylene oxidation, using both activated and untreated $Mo_{18}O_{52}$ as catalysts, at 375 °C using the same gaseous mixture for different periods of time. The bulk reoxidation of $Mo_{18}O_{52}$ to MoO_3 was estimated by i.r. spectroscopy after these different treatments.

It was observed by r.h.e.e.d. and s.e.m. [Figure 2(a,b)] that the $Mo_{18}O_{52}$ crystals used in the catalytic reaction for,

Figure 3. I.r. spectra of the solids. (a) MoO_3 ; (b) $Mo_{18}O_{52}$. $Mo_{18}O_{52}$ activated at 475 °C has the same spectrum as MoO_3 .

respectively, 16 and 63 h at 375 °C were only oxidized on the surface.

As shown schematically in Figure 1(b), the oxidation of the $Mo_{18}O_{52}$ crystal proceeded in steps in the [010] $Mo_{18}O_{52}$ direction {[103] MoO₃ direction} by growth of MoO₃ crystals in the [001] MoO₃ direction with subsequent development of the side (100) and (101) or (10 $\overline{1}$) MoO₃ faces. Comparison of Figure 2(a) and (b) shows that the side faces developed with time. No change in the initial i.r. spectrum of Mo₁₈O₅₂ was observed after oxidation treatment [Figure (3b)]. Catalytic activity was too low to measure. Crystals of Mo₁₈O₅₂ were ground in order to increase the catalytically active area of the grains. The grinding was controlled so that it did not change the structure of the $Mo_{18}O_{52}$ crystals but reduced the $Mo_{18}O_{52}$ grain size. Ground $Mo_{18}O_{52}$ crystals were then activated at 475 °C for 20 min with a rapid rate of temperature increase $(16^{\circ} \text{ min}^{-1})$ in order to accelerate the oxidation process previously observed at 375 °C. The i.r. spectra of this Mo₁₈O₅₂ sample now resembled that of MoO_3 [Figure 3(a)] which suggested that Mo₁₈O₅₂ had been almost completely oxidized to MoO_3 . This was confirmed by X-ray analysis. The catalytic activity of the activated Mo₁₈O₅₂ sample was compared with that of unactivated $Mo_{18}O_{52}$ and MoO_3 samples at 375 °C, Table 1. A large decrease in propylene conversion was observed after activation, with a simultaneous enhancement in acrolein selectivity. The almost complete reoxidation of Mo₁₈O₅₂ to MoO₃ was confirmed by electron microscopy of the activated sample. Examination by s.e.m. and t.e.m. showed the presence of small MoO₃ crystallites of uniform shape $(l = 1 - 2 \mu m; w = 0.5 - 1 \mu m; t ca. 0.1 - 0.2 \mu m)$ and the r.h.e.e.d. examination identified the basal (010), side (100), and apical (101) or (10 $\overline{1}$) MoO₃ faces [Figure 2(c)]. The shape of the grown MoO₃ crystallites with a strong development of the side crystal faces, especially the (100) face, is thought to be responsible for the improvement in acrolein selectivity after activation. The decrease in propylene conversion is thought to be associated with the fact that there are fewer molybdenum corner atoms with low co-ordination present in comparison with the Mo₁₈O₅₂ structure. Further studies are required in order to follow the changes in catalytic behaviour as a function of activation and reaction time. This work demonstrates the common structural features between the Mo₁₈O₅₂ nucleation matrix and the MoO₃ active phase which allows growth of MoO₃ crystallites with unusual crystal face development.

Received, 3rd December 1984; Com. 1706†

References

- 1 J. C. Volta and B. Moraweck, J. Chem. Soc., Chem. Commun., 1980, 338.
- 2 J. C. Volta, W. Desquesnes, B. Moraweck, and J. M. Tabibouet, 'Proceedings of the 7th International Congress on Catalysis, Tokyo 1980,' Elsevier, Amsterdam 1981, p. 1398.
- 3 J. C. Volta, M. Forissier, F. Theobald, and T. P. Pham, Faraday Discuss. Chem. Soc., 1981, 72, 225.
- 4 J. C. Volta and J. M. Tabibouet, J. Catal., 1985, 93, 467.
- 5 J. C. Volta, J. M. Tabibouet, C. Phichitkul, and J. E. Germain, 'Proceedings of the 8th International Congress on Catalysis, Berlin 1984,' Verlag Chemie, Weinheim, 1984, vol. IV, p. 451.
- 6 J. C. Volta, Proceedings of the Symposium 'Adsorption and Catalysis on Oxide Surfaces, Brunel University, 1984,' ed. M. Che and G. C. Bond, Elsevier, 1985, in the press; J. C. Volta and J. L. Portefaix, *Appl. Catal.*, 1985, in the press.
- 7 L. Kihlborg, Ark. Kemi, 1963, 21, 443.
- 8 D. Jacquot, O. Bertrand, and N. Floquet, *Acta Crystallogr., Sect. B*, in the press.

† Received in revised form, 3rd June 1985.