Synthesis of a New Class of Conductive Organic Compounds based on Phthalocyanines and Iodine

Leonid S. Grigoryan and Edward G. Sharoyan

Institute of Physical Research of Academy of Sciences of Armenian SSR, 378410, Ashtarak-2, U.S.S.R.

The title compounds exhibit high electrical conductivity, thermal stability, and a wide range of continuous variation of stoicheiometry and are synthesized by doping phthalocyanines with iodine vapour.

The charge-transfer complexes formed from metallophthalocyanines MPc and iodine represent one of the interesting types of conductive organic solids obtained^{1,2} via reaction (1) where in general x < 4. Regardless of the method of synthesis (codiffusion of the components in a solution¹ or doping by iodine vapour at $t \le 200$ °C ²) MPc was oxidized to MPc⁺, iodine was reduced to I₂⁻ or I₃⁻. In this work we have investigated doping of MPc by iodine at high temperatures of MPc (t > 200 °C). To this end MPc (M = Cu, Zn, Ni, Co, Fe, Mg, H₂) was heated together with iodine in a closed evacuated tube;³ at t 200—480 °C no reactions, other than (1), were detected. We have found that at t > 480 °C a new irreversible reaction, equation (2), occurs, where x can be continuously varied from 0.2 to 1.7, as evidenced by elemental³ and X-ray fluorescence analyses. Based on e.s.r. and optical absorption data we have shown⁴ that the product of reaction (2) contains neutral MPc⁰, doubly-charged MPc²⁺ molecules of MPc, and iodine anions I⁻. Taking into account the charge distribution,

Table 1. Electrical conductivity σ (20 °C), S cm⁻¹, of CuPcI_x.

x00.20.50.81.01.31.51.7 σ ca. 10^{-13} 2×10^{-3} 7×10^{-5} 2×10^{-5} 9×10^{-5} 4×10^{-2} 6.540									
$\sigma \qquad ca. \ 10^{-13} \qquad 2 \times 10^{-3} \qquad 7 \times 10^{-5} \qquad 2 \times 10^{-5} \qquad 9 \times 10^{-5} \qquad 4 \times 10^{-2} \qquad 6.5 \qquad 40$	x	0	0.2	0.5	0.8	1.0	1.3	1.5	1.7
	σ	<i>ca</i> . 10^{-13}	2×10^{-3}	7×10^{-5}	2×10^{-5}	9×10^{-5}	4×10^{-2}	6.5	40

 $MPcI_x = (MPc^0)_{1-x/2} [(MPc^{2+})(I^-)_2]_{x/2}$, it is clear that the product of reaction (2) is quite different from the products of reaction (1).

$$MPc + x/2I_2 \rightleftharpoons MPcI_x \tag{1}$$

$$MPc + x/2I_2 \to MPcI_x \tag{2}$$

Since at t > 480 °C the saturated vapour pressure p_s of MPc is rather high ($p_s > 0.1$ Torr), reaction (2) is accompanied by a sublimation of MPc molecules. An appropriate choice of conditions for reaction (2) (*e.g.* high pressures of iodine vapour: up to 50 Torr) reduces this loss down to a few weight %.

The case when single crystals of MPc were used for doping is of especial interest. At $t \le 200$ °C iodine vapour did not enter into the MPc single crystals even at iodine pressures up to 500 Torr.⁵ We have found that at t > 480 °C where the thermal energy of MPc molecules is comparable with the bonding energy of the crystal lattice, the coefficient of diffusion of I_2 vapour into MPc single crystals increases sharply, making it possible to dope the entire volume of MPc crystals. Crystallinity is retained upon doping in most cases especially at x < 1.2, as supported by e.s.r., 6 X-ray, and optical absorption⁴ data. The homogeneously doped crystals can be obtained if doping is carried out in the range t 540-580 °C. The homogeneity of doping is deduced from the following: (i) the unusually high thermal stability of the samples (they neither melt nor decompose at heating up to 550-600 °C in vacuo⁴) cannot be reasonably explained if there are undoped parts in the crystals; (ii) the e.s.r.,^{4,6} optical,⁴ and electrical properties of the moderately doped samples do not correspond to a simple superposition of the undoped and heavily doped (x = 1.7) ones; (iii) unlike the apparently inhomogeneous crystals, obtained at 480—540 °C, no colour inhomogeneities were observed under an optical microscope, either on the surface or in cross-section for the ones obtained at 540—580 °C.

The ability to vary stoicheiometry within a wide range provides a unique opportunity to investigate and to monitor the evolution of electrical, magnetic, optical, and other solid-state properties of MPcI_x, *e.g.* the electrical conductivity of the thin amorphous films of CuPcI_x can be gradually modified in the range from *ca.* 10^{-5} to 40 S cm⁻¹ (see Table 1).⁴

Received, 3rd January 1985; Com. 029

References

- 1 C. J. Schramm, R. P. Scaringe, D. R. Stojakovic, B. M. Hoffman, J. A. Ibers, and T. J. Marks, *J. Am. Chem. Soc.*, 1980, **102**, 6702.
- 2 E. G. Sharoyan, Y. N. Dubrov, N. N. Tikhomirova, L. A. Blumenfeld, *Zh. Teor. Eksper. Khimii*, 1965, **1**, 519; E. G. Sharoyan and H. A. Samuelyan, *Phys. Status Solidi A*, 1982, **73**, K213.
- 3 L. S. Grigoryan, M. V. Simonyan, E. G. Sharoyan, Invent. certificate No. 1120686 (1984), prior. date 18.08. 1982, U.S.S.R.
- 4 L. S. Grigoryan, M. V. Simonyan, and E. G. Sharoyan, *Phys. Status Solidi A*, 1984, **84**, 597.
- 5 E. A. Markosyan, H. A. Samuelyan, and E. G. Sharoyan, *Zh. Fiz. Khim.*, 1973, **47**, 184.
- 6 L. S. Grigoryan and E. G. Sharoyan, Fiz. Tverd. Tela, 1985, 27, 39.