Aromatic Polyether Synthesis *via* **Activated Substitution in a Ruthenium(ii) Complex of** *p* **Dic h lo ro benzene**

John A. Segal

New Science Group, Imperial Chemical Industries PLC, P.0. Box 11, The Heath, Runcorn, Cheshire WA7 4QE, U. K.

Nucleophilic substitution of **[(C5H5)Ru(p-CGH4Cl2)]+** by bis-aryloxy anions leads to the formation of aromatic organoruthenium polymers of poly-ether or -ether-ketone type; metal-free polymer *is* obtained by arene-displacement in a co-ordinating solvent.

The activation of p-dichlorobenzene to nucleophilic substitution by aryloxy anions is a goal of value in aromatic polymer synthesis. At present, the dichloro compounds used commercially to form aromatic ether linkages are based on more complex and, therefore, more costly bis-aryl systems which contain electron-withdrawing groups to facilitate substitution.1 Even in the Ullmann ether reaction, where copper compounds promote the reactivity of the Ar-X bond, the yields from dichlorobenzenes are insufficient² to produce polyethers of significant molecular weight *.3* An alternative approach to Ar-C1 activation is *via* q-arene co-ordination to a metal centre, such as $Cr(CO)₃$ ⁴ Mn $(CO)₃$ ⁺,⁵ or η -cpFe⁺,⁶ (cp = cyclopentadienyl). However, the synthetic utility of halogen substitution in co-ordinated arenes by aromatic oxygen nucleophiles has been little studied.' In fact, it appears that only reactions with phenoxide itself are known.? In the present work, di-substitution of co-ordinated $p - C_6H_4Cl_2$ has been developed to provide a novel route to organometallic polyethers and their metal-free analogues.

Cation **(1)\$** (see Scheme 1) was found to react smoothly not only with phenoxide in acetone to give the 3-ring bis-phenoxy derivative (2), § but also with the monosodium salt of **4-hydroxy-4'-methoxybenzophenone** to give both the 3-ring mono- and the 5-ring di-substitution products **(3)** and **(4).** Also, the reaction of **(1)** with the disodium salt of dihydroxybenzophenone, taken in 2: 1 ratio, led to formation of the

diruthenium system *(5).* These results demonstrate the linking of two bis-phenol units by the organometallic species, and the linking of two organometallic units by the bis-phenol. They imply that polymer formation should be possible.

Reaction of the disodium salt of 4,4'-dihydroxybenzophenone with an equimolar quantity of **(1)** in dimethylformamide (DMF) or dimethyl sulphoxide (DMSO) at 85-90 °C (Scheme 2) led to formation of the soluble organometallic ether-ketone polymer **(6)** which was isolated as a buff solid $\{^1H \, \text{n.m.r.} \, ([^2H_6] \text{DMSO}) \, \delta \, 5.66 \, (\text{s, 5H, C₅H₅});$ OCC_6H_4O). The metal-free poly(ether-ether-ketone), PEEK, was obtained from **(6)** by an arene-displacement reaction either photochemically in MeCN or, better, thermally at $160 \degree \text{C}$ in DMSO. The free PEEK polymer is insoluble, by contrast with its organometallic derivative, and it precipitated leaving $[cpRu(OSMe₂)₃]$ ⁺ in solution. An unoptimised small-scale reaction based on **(1)** (200 mg) gave a 75% yield of PEEK with inherent viscosity $(I.V.) 0.21$ (in H_2SO_4), and differential scanning calorimetry showed T_g 144, T_m 335 °C, as expected for this polymer;⁹ {¹H n.m.r. \langle CF₃SO₃H solution + $[{}^{2}\text{H}_{6}]$ DMSO capillary) δ 7.21, 8.02 ($|J_{AX} + J_{AX'}|$ 8 Hz, 8H, $\overrightarrow{OCC}_6H_4O$); 7.24 (s, 4H, $\overrightarrow{OC}_6H_4O$). From a similar reaction of **(1)** with the dipotassium salt of bis-phenol A, the analogous organometallic polyether **(7)** was isolated { 1H n.m.r. ($[{}^{2}H_{6}]$ DMSO) δ 1.70 (s, 6H, CMe₂); 5.54 (s, 5H, 8H, $OC₆H₄C$. Again displacement of ruthenium in DMSO led to the free polymer which was precipitated by the addition of water, leaving the tris-DMSO complex in the aqueous solution. This polymer, obtained in 70% yield, gave I.V. 0.29 (in CHCl₃) with T_g 115 °C [¹H n.m.r. (CDCl₃) $\tilde{\delta}$ 1.67 (s, 6 H, CMe₂); 6.86, 7.16 $(|J_{AX} + J_{AX}|$ 8.8 Hz, 8H, CC₆H₄O); 6.97 6.48 (s, 4H, $\overrightarrow{OC}_6H_4O$); 7.48, 7.97 ($|J_{AX} + J_{AX'}|$ 9 Hz, 8H, C_5H_5 ; 6.23 ζ s, 4H, OC_6H_4O ; 7.17, 7.39 $(|J_{AB} + J_{AB'}|8.5 \text{ Hz},$

[†] These reactions are with aryl *monohalides* only, see refs. 4-7, and refs. therein.

 \ddagger Obtained by the general route from $[cpRu(NCMe)_3]PF_6$, ref. 8.

⁹ All new compounds gave satisfactory elemental analysis.

Scheme 1. *Reagents:* i, NaOPh in acetone, 40°C, 10 min; ii, NaOC₆H₄C(O)C₆H₄OMe, 1:1 ratio with (1), in DMF, 50°C, 10 min; iii, NaOC₆H₄C(O)C₆H₄OMe, 2:1 ratio with (1), in DMF, 85 °C, 20 min; iv, NaOC₆H₄C(O)C₆H₄ONa, 1:2 ratio with (1), in DMF, 70 °C, 1 h.

Scheme 2. *Reagents:* i, Na or K bis-phenate, 1 : 1 ratio with **(l),** in DMSO, 85-90 "C, 1.5 h; ii, DMSO, 160 "C, 1.5 h.

 $(s, 4H, OC₆H₄O)$. Gel permeation chromatography (in 1,2-C₂H₄Cl₂ *vs.* standard polystyrenes) gave M_n 6 170, M_w 15 600.

The use of the $cpRu^{+}$ unit allows formation of the chloroarene complex from a tris-solvent species $[cpRuL₃]$ ⁺, L = NCMe, and then displacement of the product poly-arene to regenerate a tris-solvent species $[cpRuL₃]+$, $L = OSMe₂$ or NCMe. The system is therefore in principle a cyclic one, and it demonstrates the feasibility of forming polymers from simple chloroarenes co-ordinated to transition metals. The intermediate organometallic polymer need not even be isolated from solution in DMSO, since the cpRu+ unit can be removed *in situ* by simple thermolysis. This type of approach may ultimately lead to new catalytic pathways for the synthesis of the commercially important aromatic polyethers.

I thank Dr. H. M. Colquhoun for valuable discussions, and I.C.I. PLC for permission to publish.

Received, 10th June 1985; Corn. 808

References

- *E.g.* R. *N.* Johnson, A. **G.** Farnham, R. A. Clendinning, W. F. Hale, and C. N. Merrian, J. *Polym. Sci., Part A-1,* 1967, *5,* 2375.
- A. **A.** Moroz and M. **S.** Shvartsberg, *Russ. Chem. Rev. (Engl. Transl.),* 1974,43,679; see also *e.g.* G. Soula and L. Linguenheld,
- **E.** P. 21868 (1981).
- J. **A.** Segal, unpublished work.
- J. F. Bunnett and H. Herrmann, *J. Org. Chem.* , 1971,36,4081, and refs. therein.
- P. L. Pauson and J. A. Segal, J. *Chem. SOC., Dalton Trans.,* 1975, 1677.
- **A.** N. Nesmeyanov, N. **A.** Vol'kenau, and 1. N. Rolesova, *Dokl. Akad. Nauk SSSR,* 1967, 175,606.
- W. E. Watts, The Organic Chemistry of Metal-Coordinated Cyclopentadienyl and Arene Ligands, in 'Comprehensive Organometallic Chemistry,' eds. G. Wilkinson, **F.** G. A. Stone, and **E.** W. Abel, Pergamon Press, 1982, vol. **8,** p. 1013, and refs. therein.
- T. P. Gill and K. R. Mann, *Organometallics,* 1982, **1,** 485.
- *Cf.* T. E. Attwood, P. C. Dawson, J. L. Freeman, R. **J.** Hoy, J. **B.** Rose. and P. A. Staniland. *Polymer.* 1981, **22,** 1096.